Meniul

Ecuație pătratică cu numere mari. Ecuație discriminantă în matematică

Echipamente

În societatea modernă, capacitatea de a opera cu ecuații care conțin o variabilă pătrată poate fi utilă în multe domenii de activitate și este utilizată pe scară largă în practică în dezvoltările științifice și tehnice. Acest lucru poate fi evidențiat prin proiectarea navelor maritime și fluviale, a aeronavelor și a rachetelor. Cu ajutorul unor astfel de calcule, se determină traiectorii de mișcare a diferitelor corpuri, inclusiv a obiectelor spațiale. Exemplele cu soluția ecuațiilor pătratice sunt folosite nu numai în prognoza economică, în proiectarea și construcția clădirilor, ci și în cele mai obișnuite circumstanțe cotidiene. Acestea pot fi necesare în excursii în camping, la evenimente sportive, în magazine la cumpărături și în alte situații foarte frecvente.

Să împărțim expresia în factori componente

Gradul unei ecuații este determinat de valoarea maximă a gradului variabilei pe care o conține expresia dată. Dacă este egală cu 2, atunci o astfel de ecuație se numește ecuație pătratică.

Dacă vorbim în limbajul formulelor, atunci aceste expresii, indiferent de cum arată, pot fi întotdeauna aduse la forma când partea stângă a expresiei este formată din trei termeni. Printre acestea: ax 2 (adică o variabilă pătrat cu coeficientul său), bx (o necunoscută fără pătrat cu coeficientul său) și c (componentă liberă, adică un număr obișnuit). Toate acestea din partea dreaptă sunt egale cu 0. În cazul în care un astfel de polinom nu are niciunul dintre termenii săi constitutivi, cu excepția axei 2, se numește ecuație pătratică incompletă. Exemplele cu rezolvarea unor astfel de probleme, în care valoarea variabilelor nu este greu de găsit, ar trebui luate în considerare mai întâi.

Dacă expresia pare că are doi termeni în partea dreaptă a expresiei, mai precis ax 2 și bx, cel mai ușor este să găsiți x prin parantezele variabilei. Acum ecuația noastră va arăta astfel: x(ax+b). Mai mult, devine evident că fie x=0, fie problema se reduce la găsirea unei variabile din următoarea expresie: ax+b=0. Acest lucru este dictat de una dintre proprietățile înmulțirii. Regula spune că produsul a doi factori are ca rezultat 0 numai dacă unul dintre ei este zero.

Exemplu

x=0 sau 8x - 3 = 0

Ca rezultat, obținem două rădăcini ale ecuației: 0 și 0,375.

Ecuațiile de acest fel pot descrie mișcarea corpurilor sub acțiunea gravitației, care au început să se miște dintr-un anumit punct, luat drept origine. Aici notația matematică ia următoarea formă: y = v 0 t + gt 2 /2. Înlocuind valorile necesare, echivalând partea dreaptă cu 0 și găsind posibile necunoscute, puteți afla timpul scurs din momentul în care corpul se ridică până în momentul în care acesta cade, precum și multe alte cantități. Dar despre asta vom vorbi mai târziu.

Factorizarea unei expresii

Regula descrisă mai sus face posibilă rezolvarea acestor probleme în cazuri mai complexe. Luați în considerare exemple cu soluția ecuațiilor pătratice de acest tip.

X2 - 33x + 200 = 0

Acest trinom pătrat este complet. În primul rând, transformăm expresia și o descompunem în factori. Există două dintre ele: (x-8) și (x-25) = 0. Ca rezultat, avem două rădăcini 8 și 25.

Exemplele cu rezolvarea ecuațiilor pătratice din clasa a 9-a permit acestei metode să găsească o variabilă în expresii nu numai de ordinul doi, ci chiar de ordinul al treilea și al patrulea.

De exemplu: 2x 3 + 2x 2 - 18x - 18 = 0. Când factorizarea părții drepte în factori cu o variabilă, există trei dintre ei, adică (x + 1), (x-3) și (x + 3).

Ca urmare, devine evident că această ecuație are trei rădăcini: -3; -unu; 3.

Extragerea rădăcinii pătrate

Un alt caz de ecuație incompletă de ordinul doi este o expresie scrisă în limbajul literelor în așa fel încât partea dreaptă să fie construită din componentele ax 2 și c. Aici, pentru a obține valoarea variabilei, termenul liber este transferat în partea dreaptă, iar după aceea, rădăcina pătrată este extrasă de ambele părți ale egalității. Trebuie remarcat faptul că în acest caz există de obicei două rădăcini ale ecuației. Singurele excepții sunt egalitățile care nu conțin deloc termenul c, unde variabila este egală cu zero, precum și variantele de expresie când partea dreaptă se dovedește a fi negativă. În acest din urmă caz, nu există deloc soluții, deoarece acțiunile de mai sus nu pot fi efectuate cu rădăcini. Ar trebui luate în considerare exemple de soluții la ecuații pătratice de acest tip.

În acest caz, rădăcinile ecuației vor fi numerele -4 și 4.

Calculul suprafeței de teren

Necesitatea acestui gen de calcule a apărut în antichitate, deoarece dezvoltarea matematicii în acele vremuri îndepărtate s-a datorat în mare măsură necesității de a determina suprafețele și perimetrele terenurilor cu cea mai mare acuratețe.

Ar trebui să luăm în considerare și exemple cu soluția ecuațiilor pătratice compilate pe baza unor probleme de acest fel.

Deci, să presupunem că există o bucată de pământ dreptunghiulară, a cărei lungime este cu 16 metri mai mult decât lățimea. Ar trebui să găsiți lungimea, lățimea și perimetrul sitului, dacă se știe că suprafața acestuia este de 612 m 2.

Trecând la treabă, la început vom face ecuația necesară. Să notăm lățimea secțiunii ca x, apoi lungimea acesteia va fi (x + 16). Din ceea ce s-a scris rezultă că aria este determinată de expresia x (x + 16), care, conform condiției problemei noastre, este 612. Aceasta înseamnă că x (x + 16) \u003d 612.

Rezolvarea ecuațiilor pătratice complete, iar această expresie este doar atât, nu se poate face în același mod. De ce? Deși partea stângă a acesteia conține încă doi factori, produsul lor nu este deloc 0, așa că aici sunt folosite alte metode.

discriminant

În primul rând, vom face transformările necesare, apoi aspectul acestei expresii va arăta astfel: x 2 + 16x - 612 = 0. Aceasta înseamnă că am primit o expresie în forma corespunzătoare standardului specificat anterior, unde a=1, b=16, c= -612.

Acesta poate fi un exemplu de rezolvare a ecuațiilor pătratice prin discriminant. Aici se fac calculele necesare conform schemei: D = b 2 - 4ac. Această valoare auxiliară nu numai că face posibilă găsirea valorilor dorite în ecuația de ordinul doi, ci determină numărul de opțiuni posibile. În cazul D>0, sunt două dintre ele; pentru D=0 există o rădăcină. În cazul D<0, никаких шансов для решения у уравнения вообще не имеется.

Despre rădăcini și formula lor

În cazul nostru, discriminantul este: 256 - 4(-612) = 2704. Aceasta indică faptul că problema noastră are un răspuns. Dacă știți, soluția ecuațiilor pătratice trebuie continuată folosind formula de mai jos. Vă permite să calculați rădăcinile.

Aceasta înseamnă că în cazul prezentat: x 1 =18, x 2 =-34. A doua opțiune în această dilemă nu poate fi o soluție, deoarece dimensiunea terenului nu poate fi măsurată în valori negative, ceea ce înseamnă că x (adică lățimea terenului) este de 18 m. De aici calculăm lungimea: 18+16=34, iar perimetrul 2(34+ 18) = 104 (m 2).

Exemple și sarcini

Continuăm studiul ecuațiilor pătratice. Mai jos vor fi date exemple și o soluție detaliată a câtorva dintre ele.

1) 15x2 + 20x + 5 = 12x2 + 27x + 1

Să transferăm totul în partea stângă a egalității, să facem o transformare, adică să obținem forma ecuației, care se numește de obicei cea standard, și să o echivalăm cu zero.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

Adăugând altele similare, determinăm discriminantul: D \u003d 49 - 48 \u003d 1. Deci ecuația noastră va avea două rădăcini. Le calculăm conform formulei de mai sus, ceea ce înseamnă că primul dintre ele va fi egal cu 4/3, iar al doilea 1.

2) Acum vom dezvălui ghicitori de alt fel.

Să aflăm dacă aici există rădăcini x 2 - 4x + 5 = 1? Pentru a obține un răspuns exhaustiv, aducem polinomul la forma familiară corespunzătoare și calculăm discriminantul. În acest exemplu, nu este necesar să se rezolve ecuația pătratică, deoarece esența problemei nu este deloc în aceasta. În acest caz, D \u003d 16 - 20 \u003d -4, ceea ce înseamnă că într-adevăr nu există rădăcini.

teorema lui Vieta

Este convenabil să se rezolve ecuații pătratice prin formulele de mai sus și prin discriminant, atunci când rădăcina pătrată este extrasă din valoarea acestuia din urmă. Dar acest lucru nu se întâmplă întotdeauna. Cu toate acestea, există multe modalități de a obține valorile variabilelor în acest caz. Exemplu: rezolvarea ecuațiilor pătratice folosind teorema lui Vieta. Este numit după un bărbat care a trăit în Franța secolului al XVI-lea și a avut o carieră strălucitoare datorită talentului său matematic și a legăturilor sale la curte. Portretul lui poate fi văzut în articol.

Modelul pe care l-a observat celebrul francez a fost următorul. El a demonstrat că suma rădăcinilor ecuației este egală cu -p=b/a, iar produsul lor corespunde cu q=c/a.

Acum să ne uităm la sarcini specifice.

3x2 + 21x - 54 = 0

Pentru simplitate, să transformăm expresia:

x 2 + 7x - 18 = 0

Folosind teorema Vieta, aceasta ne va da următoarele: suma rădăcinilor este -7, iar produsul lor este -18. De aici obținem că rădăcinile ecuației sunt numerele -9 și 2. După ce am verificat, ne vom asigura că aceste valori ale variabilelor se potrivesc cu adevărat în expresie.

Graficul și ecuația unei parabole

Conceptele de funcție pătratică și ecuații pătratice sunt strâns legate. Exemple în acest sens au fost deja date anterior. Acum să ne uităm la câteva puzzle-uri matematice mai detaliat. Orice ecuație de tipul descris poate fi reprezentată vizual. O astfel de dependență, desenată sub forma unui grafic, se numește parabolă. Diferitele sale tipuri sunt prezentate în figura de mai jos.

Orice parabolă are un vârf, adică un punct din care ies ramurile sale. Dacă a>0, ele se ridică la infinit, iar când a<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

Reprezentările vizuale ale funcțiilor ajută la rezolvarea oricăror ecuații, inclusiv a celor pătratice. Această metodă se numește grafică. Iar valoarea variabilei x este coordonata abscisă în punctele în care linia graficului se intersectează cu 0x. Coordonatele vârfului pot fi găsite prin formula tocmai dată x 0 = -b / 2a. Și, înlocuind valoarea rezultată în ecuația inițială a funcției, puteți afla y 0, adică a doua coordonată a vârfului parabolei aparținând axei y.

Intersecția ramurilor parabolei cu axa absciselor

Există o mulțime de exemple cu rezolvarea ecuațiilor pătratice, dar există și modele generale. Să le luăm în considerare. Este clar că intersecția graficului cu axa 0x pentru a>0 este posibilă numai dacă y 0 ia valori negative. Și pentru a<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Altfel D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

Din graficul unei parabole, puteți determina și rădăcinile. Este adevărat și invers. Adică, dacă nu este ușor să obțineți o reprezentare vizuală a unei funcții pătratice, puteți echivala partea dreaptă a expresiei cu 0 și puteți rezolva ecuația rezultată. Și cunoscând punctele de intersecție cu axa 0x, este mai ușor de trasat.

Din istorie

Cu ajutorul ecuațiilor care conțin o variabilă pătrată, pe vremuri, nu numai că se făceau calcule matematice și se determina aria formelor geometrice. Anticii aveau nevoie de astfel de calcule pentru descoperiri grandioase în domeniul fizicii și astronomiei, precum și pentru a face prognoze astrologice.

După cum sugerează oamenii de știință moderni, locuitorii Babilonului au fost printre primii care au rezolvat ecuații patratice. S-a întâmplat cu patru secole înainte de apariția erei noastre. Desigur, calculele lor erau fundamental diferite de cele acceptate în prezent și s-au dovedit a fi mult mai primitive. De exemplu, matematicienii mesopotamieni nu aveau idee despre existența numerelor negative. De asemenea, nu erau familiarizați cu alte subtilități ale celor cunoscute oricărui student al timpului nostru.

Poate chiar mai devreme decât oamenii de știință din Babilon, înțeleptul din India, Baudhayama, a preluat soluția ecuațiilor pătratice. Acest lucru s-a întâmplat cu aproximativ opt secole înainte de apariția erei lui Hristos. Adevărat, ecuațiile de ordinul doi, metodele de rezolvare pe care le-a dat, erau cele mai simple. Pe lângă el, matematicienii chinezi erau și ei interesați de întrebări similare pe vremuri. În Europa, ecuațiile pătratice au început să fie rezolvate abia la începutul secolului al XIII-lea, dar mai târziu au fost folosite în lucrările lor de oameni de știință atât de mari precum Newton, Descartes și mulți alții.

Ecuațiile cuadratice sunt studiate în clasa a 8-a, așa că nu este nimic complicat aici. Capacitatea de a le rezolva este esențială.

O ecuație pătratică este o ecuație de forma ax 2 + bx + c = 0, unde coeficienții a , b și c sunt numere arbitrare și a ≠ 0.

Înainte de a studia metode specifice de rezolvare, observăm că toate ecuațiile pătratice pot fi împărțite în trei clase:

  1. Nu au rădăcini;
  2. Au exact o rădăcină;
  3. Au două rădăcini diferite.

Aceasta este o diferență importantă între ecuațiile pătratice și liniare, unde rădăcina există întotdeauna și este unică. Cum se determină câte rădăcini are o ecuație? Există un lucru minunat pentru asta - discriminant.

discriminant

Să fie dată ecuația pătratică ax 2 + bx + c = 0. Atunci discriminantul este pur și simplu numărul D = b 2 − 4ac .

Această formulă trebuie cunoscută pe de rost. De unde vine nu este important acum. Un alt lucru este important: prin semnul discriminantului, puteți determina câte rădăcini are o ecuație pătratică. Și anume:

  1. Daca D< 0, корней нет;
  2. Dacă D = 0, există exact o rădăcină;
  3. Dacă D > 0, vor exista două rădăcini.

Vă rugăm să rețineți: discriminantul indică numărul de rădăcini și deloc semnele acestora, așa cum cred din anumite motive mulți oameni. Aruncă o privire la exemple și vei înțelege totul singur:

Sarcină. Câte rădăcini au ecuațiile pătratice:

  1. x 2 - 8x + 12 = 0;
  2. 5x2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Scriem coeficienții pentru prima ecuație și găsim discriminantul:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 1 12 = 64 − 48 = 16

Deci, discriminantul este pozitiv, deci ecuația are două rădăcini diferite. Analizăm a doua ecuație în același mod:
a = 5; b = 3; c = 7;
D \u003d 3 2 - 4 5 7 \u003d 9 - 140 \u003d -131.

Discriminantul este negativ, nu există rădăcini. Ultima ecuație rămâne:
a = 1; b = -6; c = 9;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

Discriminantul este egal cu zero - rădăcina va fi una.

Rețineți că au fost notați coeficienți pentru fiecare ecuație. Da, este lung, da, este plictisitor - dar nu vei amesteca șansele și nu vei face greșeli stupide. Alegeți singuri: viteza sau calitatea.

Apropo, dacă vă „umpleți mâna”, după un timp nu va mai fi nevoie să scrieți toți coeficienții. Vei efectua astfel de operații în capul tău. Majoritatea oamenilor încep să facă asta undeva după 50-70 de ecuații rezolvate - în general, nu atât de mult.

Rădăcinile unei ecuații pătratice

Acum să trecem la soluție. Dacă discriminantul D > 0, rădăcinile pot fi găsite folosind formulele:

Formula de bază pentru rădăcinile unei ecuații pătratice

Când D = 0, puteți folosi oricare dintre aceste formule - obțineți același număr, care va fi răspunsul. În sfârșit, dacă D< 0, корней нет — ничего считать не надо.

  1. x 2 - 2x - 3 = 0;
  2. 15 - 2x - x2 = 0;
  3. x2 + 12x + 36 = 0.

Prima ecuație:
x 2 - 2x - 3 = 0 ⇒ a = 1; b = −2; c = -3;
D = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ ecuația are două rădăcini. Să le găsim:

A doua ecuație:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 (−1) 15 = 64.

D > 0 ⇒ ecuația are din nou două rădăcini. Să le găsim

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \end(align)\]

În sfârșit, a treia ecuație:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 1 36 = 0.

D = 0 ⇒ ecuația are o rădăcină. Se poate folosi orice formulă. De exemplu, primul:

După cum puteți vedea din exemple, totul este foarte simplu. Dacă știi formulele și poți număra, nu vor fi probleme. Cel mai adesea, erorile apar atunci când coeficienții negativi sunt înlocuiți în formulă. Aici, din nou, tehnica descrisă mai sus vă va ajuta: priviți formula literal, pictați fiecare pas - și scăpați de greșeli foarte curând.

Ecuații patratice incomplete

Se întâmplă ca ecuația pătratică să fie oarecum diferită de ceea ce este dat în definiție. De exemplu:

  1. x2 + 9x = 0;
  2. x2 − 16 = 0.

Este ușor de observat că unul dintre termeni lipsește din aceste ecuații. Astfel de ecuații pătratice sunt chiar mai ușor de rezolvat decât cele standard: nici măcar nu trebuie să calculeze discriminantul. Deci, să introducem un nou concept:

Ecuația ax 2 + bx + c = 0 se numește ecuație pătratică incompletă dacă b = 0 sau c = 0, adică. coeficientul variabilei x sau al elementului liber este egal cu zero.

Desigur, un caz foarte dificil este posibil atunci când ambii acești coeficienți sunt egali cu zero: b \u003d c \u003d 0. În acest caz, ecuația ia forma ax 2 \u003d 0. Evident, o astfel de ecuație are o singură ecuație. rădăcină: x \u003d 0.

Să luăm în considerare alte cazuri. Fie b \u003d 0, apoi obținem o ecuație pătratică incompletă de forma ax 2 + c \u003d 0. Să o transformăm ușor:

Deoarece rădăcina pătrată aritmetică există doar dintr-un număr nenegativ, ultima egalitate are sens doar atunci când (−c / a ) ≥ 0. Concluzie:

  1. Dacă o ecuație pătratică incompletă de forma ax 2 + c = 0 satisface inegalitatea (−c / a ) ≥ 0, vor exista două rădăcini. Formula este dată mai sus;
  2. Dacă (−c / a )< 0, корней нет.

După cum puteți vedea, discriminantul nu a fost necesar - nu există deloc calcule complexe în ecuațiile pătratice incomplete. De fapt, nici nu este necesar să ne amintim inegalitatea (−c / a ) ≥ 0. Este suficient să exprimăm valoarea lui x 2 și să vedem ce este de cealaltă parte a semnului egal. Dacă există un număr pozitiv, vor exista două rădăcini. Dacă este negativ, nu vor exista deloc rădăcini.

Acum să ne ocupăm de ecuații de forma ax 2 + bx = 0, în care elementul liber este egal cu zero. Totul este simplu aici: vor exista întotdeauna două rădăcini. Este suficient să factorizezi polinomul:

Scoaterea factorului comun din paranteză

Produsul este egal cu zero atunci când cel puțin unul dintre factori este egal cu zero. De aici vin rădăcinile. În concluzie, vom analiza câteva dintre aceste ecuații:

Sarcină. Rezolvarea ecuațiilor pătratice:

  1. x2 − 7x = 0;
  2. 5x2 + 30 = 0;
  3. 4x2 − 9 = 0.

x 2 − 7x = 0 ⇒ x (x − 7) = 0 ⇒ x 1 = 0; x2 = −(−7)/1 = 7.

5x2 + 30 = 0 ⇒ 5x2 = -30 ⇒ x2 = -6. Nu există rădăcini, pentru că pătratul nu poate fi egal cu un număr negativ.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 \u003d -1,5.

Discriminantul, precum și ecuațiile pătratice, încep să fie studiate la cursul de algebră din clasa a VIII-a. Puteți rezolva o ecuație pătratică prin discriminant și folosind teorema Vieta. Metodologia de studiu a ecuațiilor pătratice, precum și formula discriminantă, este insuflată mai degrabă fără succes la școlari, la fel ca mult în educația reală. Prin urmare, trec anii de școală, educația din clasele 9-11 înlocuiește „învățământul superior” și toată lumea caută din nou - „Cum se rezolvă o ecuație pătratică?”, „Cum se găsesc rădăcinile unei ecuații?”, „Cum se găsesc discriminantul?” și...

Formula discriminantă

Discriminantul D al ecuației pătratice a*x^2+bx+c=0 este D=b^2–4*a*c.
Rădăcinile (soluțiile) ecuației pătratice depind de semnul discriminantului (D):
D>0 - ecuația are 2 rădăcini reale diferite;
D=0 - ecuația are 1 rădăcină (2 rădăcini coincide):
D<0 – не имеет действительных корней (в школьной теории). В ВУЗах изучают комплексные числа и уже на множестве комплексных чисел уравнение с отрицательным дискриминантом имеет два комплексных корня.
Formula de calcul a discriminantului este destul de simplă, așa că multe site-uri oferă un calculator discriminant online. Nu ne-am dat seama încă de acest tip de scripturi, așa că cine știe cum să implementeze acest lucru, vă rugăm să scrieți la e-mail Această adresă de e-mail este protejată de spamboți. Trebuie să aveți JavaScript activat pentru a vizualiza. .

Formula generală pentru găsirea rădăcinilor unei ecuații pătratice:

Rădăcinile ecuației se găsesc prin formula
Dacă coeficientul variabilei din pătrat este pereche, atunci este recomandabil să se calculeze nu discriminantul, ci a patra parte a acestuia.
În astfel de cazuri, rădăcinile ecuației sunt găsite prin formula

Al doilea mod de a găsi rădăcini este Teorema lui Vieta.

Teorema este formulată nu numai pentru ecuații pătratice, ci și pentru polinoame. Puteți citi acest lucru pe Wikipedia sau alte resurse electronice. Cu toate acestea, pentru a simplifica, luați în considerare acea parte a acesteia care se referă la ecuațiile patratice reduse, adică ecuațiile de forma (a=1)
Esența formulelor Vieta este că suma rădăcinilor ecuației este egală cu coeficientul variabilei, luată cu semnul opus. Produsul rădăcinilor ecuației este egal cu termenul liber. Formulele teoremei lui Vieta au o notație.
Derivarea formulei Vieta este destul de simplă. Să scriem ecuația pătratică în termeni de factori primi
După cum puteți vedea, totul ingenios este simplu în același timp. Este eficient să folosiți formula Vieta atunci când diferența dintre modulul rădăcinilor sau diferența dintre modulul rădăcinilor este 1, 2. De exemplu, următoarele ecuații, conform teoremei Vieta, au rădăcini




Analiza cu până la 4 ecuații ar trebui să arate așa. Produsul rădăcinilor ecuației este 6, deci rădăcinile pot fi valorile (1, 6) și (2, 3) sau perechi cu semnul opus. Suma rădăcinilor este 7 (coeficientul variabilei cu semnul opus). De aici concluzionăm că soluțiile ecuației pătratice sunt egale cu x=2; x=3.
Este mai ușor să selectezi rădăcinile ecuației dintre divizorii termenului liber, corectându-le semnul pentru a îndeplini formulele Vieta. La început, acest lucru pare dificil de realizat, dar cu exersarea unui număr de ecuații pătratice, această tehnică va fi mai eficientă decât calcularea discriminantului și găsirea rădăcinilor ecuației pătratice în mod clasic.
După cum puteți vedea, teoria școlară de studiere a discriminanților și a modalităților de a găsi soluții la ecuație este lipsită de sens practic - „De ce au nevoie școlarii de o ecuație pătratică?”, „Care este sensul fizic al discriminantului?”.

Să încercăm să ne dăm seama ce descrie discriminantul?

În cursul algebrei, ei studiază funcții, scheme pentru studierea funcțiilor și trasarea funcțiilor. Dintre toate funcțiile, un loc important este ocupat de o parabolă, a cărei ecuație poate fi scrisă sub forma
Deci sensul fizic al ecuației pătratice este zerourile parabolei, adică punctele de intersecție ale graficului funcției cu axa absciselor Ox
Vă rog să vă amintiți proprietățile parabolelor care sunt descrise mai jos. Va veni timpul să susțineți examene, teste sau examene de admitere și veți fi recunoscători pentru materialul de referință. Semnul variabilei din pătrat corespunde dacă ramurile parabolei de pe grafic vor urca (a>0),

sau o parabolă cu ramurile în jos (a<0) .

Vârful parabolei se află la jumătatea distanței dintre rădăcini

Sensul fizic al discriminantului:

Dacă discriminantul este mai mare decât zero (D>0), parabola are două puncte de intersecție cu axa Ox.
Dacă discriminantul este egal cu zero (D=0), atunci parabola din partea de sus atinge axa x.
Și ultimul caz, când discriminantul este mai mic decât zero (D<0) – график параболы принадлежит плоскости над осью абсцисс (ветки параболы вверх), или график полностью под осью абсцисс (ветки параболы опущены вниз).

Ecuații patratice incomplete

Utilizarea ecuațiilor este larg răspândită în viața noastră. Ele sunt folosite în multe calcule, construcția de structuri și chiar sport. Ecuațiile au fost folosite de om din cele mai vechi timpuri și de atunci utilizarea lor a crescut. Discriminantul vă permite să rezolvați orice ecuație pătratică folosind formula generală, care are următoarea formă:

Formula discriminantă depinde de gradul polinomului. Formula de mai sus este potrivită pentru rezolvarea ecuațiilor pătratice de următoarea formă:

Discriminantul are următoarele proprietăți pe care trebuie să le cunoașteți:

* „D” este 0 când polinomul are rădăcini multiple (rădăcini egale);

* „D” este un polinom simetric în raport cu rădăcinile polinomului și, prin urmare, este un polinom în coeficienții săi; mai mult, coeficienții acestui polinom sunt numere întregi, indiferent de extensia în care sunt luate rădăcinile.

Să presupunem că ni se oferă o ecuație pătratică de următoarea formă:

1 ecuație

După formula avem:

Deoarece \, atunci ecuația are 2 rădăcini. Să le definim:

Unde pot rezolva ecuația prin rezolvatorul online discriminant?

Puteți rezolva ecuația pe site-ul nostru https: // site-ul. Rezolvatorul online gratuit vă va permite să rezolvați o ecuație online de orice complexitate în câteva secunde. Tot ce trebuie să faceți este să vă introduceți datele în soluție. De asemenea, puteți viziona instrucțiunile video și puteți afla cum să rezolvați ecuația pe site-ul nostru, iar dacă aveți întrebări, le puteți adresa în grupul nostru Vkontakte http://vk.com/pocketteacher. Alătură-te grupului nostru, suntem mereu bucuroși să te ajutăm.

Ecuație cuadratică - ușor de rezolvat! * Mai departe în textul „KU”. Prieteni, s-ar părea că la matematică poate fi mai ușor decât rezolvarea unei astfel de ecuații. Dar ceva mi-a spus că mulți oameni au probleme cu el. Am decis să văd câte impresii oferă Yandex pe cerere pe lună. Iată ce s-a întâmplat, aruncați o privire:


Ce înseamnă? Asta înseamnă că aproximativ 70.000 de oameni pe lună caută această informație, iar aceasta este vară, și ce se va întâmpla în timpul anului școlar - vor fi de două ori mai multe solicitări. Acest lucru nu este surprinzător, pentru că acei băieți și fete care au absolvit de mult școala și se pregătesc de examen caută aceste informații, iar școlarii încearcă și ei să-și împrospăteze memoria.

În ciuda faptului că există o mulțime de site-uri care spun cum să rezolv această ecuație, am decis să contribu și eu și să public materialul. În primul rând, doresc ca vizitatorii să vină pe site-ul meu la această solicitare; în al doilea rând, în alte articole, când apare discursul „KU”, voi da un link către acest articol; în al treilea rând, vă voi spune puțin mai multe despre soluția lui decât se spune de obicei pe alte site-uri. Să începem! Conținutul articolului:

O ecuație pătratică este o ecuație de forma:

unde coeficienții a,bși cu numere arbitrare, cu a≠0.

În cursul școlar, materialul este dat în următoarea formă - împărțirea ecuațiilor în trei clase se face condiționat:

1. Au două rădăcini.

2. * Au o singură rădăcină.

3. Nu au rădăcini. Este demn de remarcat aici că nu au rădăcini reale

Cum se calculează rădăcinile? Doar!

Calculăm discriminantul. Sub acest cuvânt „îngrozitor” se află o formulă foarte simplă:

Formulele rădăcinilor sunt următoarele:

*Aceste formule trebuie cunoscute pe de rost.

Puteți nota și rezolva imediat:

Exemplu:


1. Dacă D > 0, atunci ecuația are două rădăcini.

2. Dacă D = 0, atunci ecuația are o rădăcină.

3. Dacă D< 0, то уравнение не имеет действительных корней.

Să ne uităm la ecuație:


Cu această ocazie, când discriminantul este zero, cursul școlar spune că se obține o rădăcină, aici este egală cu nouă. Așa este, este, dar...

Această reprezentare este oarecum incorectă. De fapt, există două rădăcini. Da, da, nu fi surprins, rezultă două rădăcini egale și, pentru a fi precis din punct de vedere matematic, atunci două rădăcini ar trebui să fie scrise în răspuns:

x 1 = 3 x 2 = 3

Dar așa este - o mică digresiune. La școală, poți scrie și spune că există o singură rădăcină.

Acum următorul exemplu:


După cum știm, rădăcina unui număr negativ nu este extrasă, deci nu există o soluție în acest caz.

Acesta este tot procesul de decizie.

Funcția cuadratică.

Iată cum arată geometric soluția. Acest lucru este extrem de important de înțeles (în viitor, într-unul dintre articole, vom analiza în detaliu soluția unei inegalități pătratice).

Aceasta este o funcție a formei:

unde x și y sunt variabile

a, b, c sunt numere date, unde a ≠ 0

Graficul este o parabolă:

Adică, rezultă că rezolvând o ecuație pătratică cu „y” egal cu zero, găsim punctele de intersecție ale parabolei cu axa x. Pot exista două dintre aceste puncte (discriminantul este pozitiv), unul (discriminantul este zero) sau niciunul (discriminantul este negativ). Mai multe despre funcția pătratică Puteți vizualiza articol de Inna Feldman.

Luați în considerare exemple:

Exemplul 1: Decide 2x 2 +8 X–192=0

a=2 b=8 c= -192

D = b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Răspuns: x 1 = 8 x 2 = -12

* Puteți împărți imediat părțile stânga și dreaptă ale ecuației cu 2, adică simplificați-o. Calculele vor fi mai ușoare.

Exemplul 2: Decide x2–22 x+121 = 0

a=1 b=-22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

Avem că x 1 \u003d 11 și x 2 \u003d 11

În răspuns, este permis să scrieți x = 11.

Răspuns: x = 11

Exemplul 3: Decide x 2 –8x+72 = 0

a=1 b= -8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

Discriminantul este negativ, nu există soluție în numerele reale.

Răspuns: nicio soluție

Discriminantul este negativ. Există o soluție!

Aici vom vorbi despre rezolvarea ecuației în cazul în care se obține un discriminant negativ. Știi ceva despre numerele complexe? Nu voi intra în detaliu aici despre de ce și unde au apărut și care este rolul și necesitatea lor specifică în matematică, acesta este un subiect pentru un articol separat.

Conceptul de număr complex.

Un pic de teorie.

Un număr complex z este un număr de formă

z = a + bi

unde a și b sunt numere reale, i este așa-numita unitate imaginară.

a+bi este un SINGUR NUMĂR, nu o adăugare.

Unitatea imaginară este egală cu rădăcina lui minus unu:

Acum luați în considerare ecuația:


Obțineți două rădăcini conjugate.

Ecuație pătratică incompletă.

Luați în considerare cazuri speciale, atunci când coeficientul „b” sau „c” este egal cu zero (sau ambele sunt egale cu zero). Se rezolvă cu ușurință, fără discriminare.

Cazul 1. Coeficientul b = 0.

Ecuația ia forma:

Să transformăm:

Exemplu:

4x 2 -16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = -2

Cazul 2. Coeficientul c = 0.

Ecuația ia forma:

Transformați, factorizați:

*Produsul este egal cu zero atunci când cel puțin unul dintre factori este egal cu zero.

Exemplu:

9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 sau x–5 =0

x 1 = 0 x 2 = 5

Cazul 3. Coeficienții b = 0 și c = 0.

Aici este clar că soluția ecuației va fi întotdeauna x = 0.

Proprietăți utile și modele de coeficienți.

Există proprietăți care permit rezolvarea ecuațiilor cu coeficienți mari.

AX 2 + bx+ c=0 egalitate

A + b+ c = 0, apoi

— dacă pentru coeficienții ecuației AX 2 + bx+ c=0 egalitate

A+ cu =b, apoi

Aceste proprietăți ajută la rezolvarea unui anumit tip de ecuație.

Exemplul 1: 5001 X 2 –4995 X – 6=0

Suma coeficienților este 5001+( 4995)+( 6) = 0, deci

Exemplul 2: 2501 X 2 +2507 X+6=0

Egalitate A+ cu =b, mijloace

Regularități ale coeficienților.

1. Dacă în ecuația ax 2 + bx + c \u003d 0 coeficientul „b” este (a 2 +1), iar coeficientul „c” este numeric egal cu coeficientul „a”, atunci rădăcinile sale sunt

ax 2 + (a 2 +1) ∙ x + a \u003d 0 \u003d\u003e x 1 \u003d -a x 2 \u003d -1 / a.

Exemplu. Se consideră ecuația 6x 2 +37x+6 = 0.

x 1 \u003d -6 x 2 \u003d -1/6.

2. Dacă în ecuația ax 2 - bx + c \u003d 0, coeficientul „b” este (a 2 +1), iar coeficientul „c” este numeric egal cu coeficientul „a”, atunci rădăcinile sale sunt

ax 2 - (a 2 + 1) ∙ x + a \u003d 0 \u003d\u003e x 1 \u003d a x 2 \u003d 1 / a.

Exemplu. Se consideră ecuația 15x 2 –226x +15 = 0.

x 1 = 15 x 2 = 1/15.

3. Dacă în ecuaţie ax 2 + bx - c = 0 coeficient "b" este egal (a 2 – 1), și coeficientul „c” egal numeric cu coeficientul „a”, atunci rădăcinile sale sunt egale

ax 2 + (a 2 -1) ∙ x - a \u003d 0 \u003d\u003e x 1 \u003d - a x 2 \u003d 1 / a.

Exemplu. Se consideră ecuația 17x 2 + 288x - 17 = 0.

x 1 \u003d - 17 x 2 \u003d 1/17.

4. Dacă în ecuația ax 2 - bx - c \u003d 0, coeficientul „b” este egal cu (a 2 - 1), iar coeficientul c este numeric egal cu coeficientul „a”, atunci rădăcinile sale sunt

ax 2 - (a 2 -1) ∙ x - a \u003d 0 \u003d\u003e x 1 \u003d a x 2 \u003d - 1 / a.

Exemplu. Se consideră ecuația 10x2 - 99x -10 = 0.

x 1 \u003d 10 x 2 \u003d - 1/10

teorema lui Vieta.

Teorema lui Vieta poartă numele celebrului matematician francez Francois Vieta. Folosind teorema lui Vieta, se poate exprima suma și produsul rădăcinilor unui KU arbitrar în termeni de coeficienți.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

În concluzie, numărul 14 dă doar 5 și 9. Acestea sunt rădăcinile. Cu o anumită îndemânare, folosind teorema prezentată, poți rezolva imediat multe ecuații pătratice oral.

În plus, teorema lui Vieta. convenabil deoarece după rezolvarea ecuației pătratice în mod obișnuit (prin discriminant), se pot verifica rădăcinile rezultate. Recomand să faci asta tot timpul.

METODA DE TRANSFER

Prin această metodă, coeficientul „a” este înmulțit cu termenul liber, parcă „transferat” acestuia, motiv pentru care se numește metoda de transfer. Această metodă este folosită atunci când este ușor de găsit rădăcinile unei ecuații folosind teorema lui Vieta și, cel mai important, când discriminantul este un pătrat exact.

În cazul în care un A± b+c≠ 0, atunci se utilizează tehnica de transfer, de exemplu:

2X 2 – 11x+ 5 = 0 (1) => X 2 – 11x+ 10 = 0 (2)

Conform teoremei Vieta din ecuația (2), este ușor de determinat că x 1 \u003d 10 x 2 \u003d 1

Rădăcinile obținute ale ecuației trebuie împărțite la 2 (deoarece cele două au fost „aruncate” din x 2), obținem

x 1 \u003d 5 x 2 \u003d 0,5.

Care este rațiunea? Vezi ce se întâmplă.

Discriminanții ecuațiilor (1) și (2) sunt:

Dacă te uiți la rădăcinile ecuațiilor, atunci se obțin numai numitori diferiți, iar rezultatul depinde tocmai de coeficientul de la x 2:


A doua rădăcină (modificată) este de 2 ori mai mare.

Prin urmare, împărțim rezultatul la 2.

*Dacă aruncăm trei de un fel, atunci împărțim rezultatul la 3 și așa mai departe.

Răspuns: x 1 = 5 x 2 = 0,5

mp ur-ie și examenul.

Voi spune pe scurt despre importanța ei - TREBUIE SĂ POȚI DECIDE rapid și fără să stai pe gânduri, trebuie să cunoști pe de rost formulele rădăcinilor și discriminantului. Multe dintre sarcinile care fac parte din sarcinile USE se reduc la rezolvarea unei ecuații pătratice (inclusiv a celor geometrice).

Ce este de remarcat!

1. Forma ecuației poate fi „implicita”. De exemplu, următoarea intrare este posibilă:

15+ 9x 2 - 45x = 0 sau 15x+42+9x 2 - 45x=0 sau 15 -5x+10x 2 = 0.

Trebuie să îl aduceți într-o formă standard (pentru a nu vă încurca atunci când rezolvați).

2. Amintiți-vă că x este o valoare necunoscută și poate fi notat cu orice altă literă - t, q, p, h și altele.