Menu

Équation quadratique avec de grands nombres. Équation discriminante en mathématiques

Équipement

DANS société moderne la capacité d'effectuer des opérations avec des équations contenant une variable carrée peut être utile dans de nombreux domaines d'activité et est largement utilisée dans la pratique dans les développements scientifiques et techniques. On en trouve des preuves dans la conception des navires maritimes et fluviaux, des avions et des fusées. À l'aide de tels calculs, les trajectoires de mouvement d'une grande variété de corps, y compris des objets spatiaux, sont déterminées. Exemples avec solution équations quadratiques sont utilisés non seulement dans les prévisions économiques, dans la conception et la construction de bâtiments, mais aussi dans les circonstances quotidiennes les plus ordinaires. Ils peuvent être nécessaires lors de randonnées, lors d'événements sportifs, dans les magasins pour faire des achats et dans d'autres situations très courantes.

Décomposons l'expression en ses facteurs constitutifs

Le degré d'une équation est déterminé par la valeur maximale du degré de la variable que contient l'expression. S'il est égal à 2, alors une telle équation est dite quadratique.

Si nous parlons dans le langage des formules, alors les expressions indiquées, quelle que soit leur apparence, peuvent toujours être mises sous la forme lorsque le côté gauche de l'expression est constitué de trois termes. Parmi eux : ax 2 (c'est-à-dire une variable au carré avec son coefficient), bx (une inconnue sans carré avec son coefficient) et c (une composante libre, c'est-à-dire un nombre ordinaire). Tout cela du côté droit est égal à 0. Dans le cas où un tel polynôme manque d'un de ses termes constitutifs, à l'exception de l'axe 2, on parle d'équation quadratique incomplète. Des exemples de solutions à de tels problèmes, dans lesquels les valeurs des variables sont faciles à trouver, doivent être considérés en premier.

Si l’expression semble avoir deux termes sur le côté droit, plus précisément ax 2 et bx, le moyen le plus simple de trouver x est de mettre la variable entre parenthèses. Maintenant, notre équation ressemblera à ceci : x(ax+b). Ensuite, il devient évident que soit x=0, soit le problème revient à trouver une variable à partir de l'expression suivante : ax+b=0. Ceci est dicté par l'une des propriétés de la multiplication. La règle stipule que le produit de deux facteurs donne 0 seulement si l’un d’eux est nul.

Exemple

x=0 ou 8x - 3 = 0

En conséquence, nous obtenons deux racines de l'équation : 0 et 0,375.

Des équations de ce type peuvent décrire le mouvement de corps sous l'influence de la gravité, qui ont commencé à se déplacer à partir d'un certain point pris comme origine des coordonnées. Ici la notation mathématique prend la forme suivante : y = v 0 t + gt 2 /2. En substituant les valeurs nécessaires, en assimilant le côté droit à 0 et en trouvant d'éventuelles inconnues, vous pouvez connaître le temps qui s'écoule depuis le moment où le corps se lève jusqu'au moment où il tombe, ainsi que de nombreuses autres quantités. Mais nous en reparlerons plus tard.

Factoriser une expression

La règle décrite ci-dessus permet de résoudre ces problèmes dans des cas plus complexes. Regardons des exemples de résolution d'équations quadratiques de ce type.

X2 - 33x + 200 = 0

Ce trinôme quadratique est complet. Tout d’abord, transformons l’expression et factorisons-la. Il y en a deux : (x-8) et (x-25) = 0. On a donc deux racines 8 et 25.

Des exemples de résolution d'équations quadratiques en 9e année permettent avec cette méthode de trouver une variable dans des expressions non seulement du deuxième, mais même du troisième et du quatrième ordre.

Par exemple : 2x 3 + 2x 2 - 18x - 18 = 0. Lors de la factorisation du côté droit en facteurs avec une variable, il y en a trois, à savoir (x+1), (x-3) et (x+ 3).

En conséquence, il devient évident que cette équation a trois racines : -3 ; -1 ; 3.

Racine carrée

Un autre cas d'équation incomplète du second ordre est une expression représentée dans le langage des lettres de telle manière que le membre de droite est construit à partir des composantes ax 2 et c. Ici, pour obtenir la valeur de la variable, le terme libre est transféré à côté droit, puis la racine carrée est prise des deux côtés de l'égalité. Il convient de noter que dans ce cas, l’équation a généralement deux racines. Les seules exceptions peuvent être les égalités qui ne contiennent aucun terme avec, où la variable est égale à zéro, ainsi que les variantes d'expressions lorsque le côté droit s'avère négatif. Dans ce dernier cas, il n'y a aucune solution, puisque les actions ci-dessus ne peuvent pas être effectuées avec des racines. Des exemples de solutions à des équations quadratiques de ce type doivent être pris en compte.

Dans ce cas, les racines de l’équation seront les nombres -4 et 4.

Calcul de la superficie du terrain

La nécessité de ce type de calculs est apparue dans l'Antiquité, car le développement des mathématiques à cette époque lointaine était largement déterminé par la nécessité de déterminer avec la plus grande précision les superficies et les périmètres des parcelles.

Nous devrions également considérer des exemples de résolution d’équations quadratiques basées sur des problèmes de ce type.

Supposons donc qu'il y ait un terrain rectangulaire dont la longueur est supérieure de 16 mètres à la largeur. Vous devriez connaître la longueur, la largeur et le périmètre du site si vous savez que sa superficie est de 612 m 2.

Pour commencer, créons d’abord l’équation nécessaire. Notons x la largeur de la zone, alors sa longueur sera (x+16). De ce qui a été écrit, il s'ensuit que l'aire est déterminée par l'expression x(x+16), qui, selon les conditions de notre problème, est 612. Cela signifie que x(x+16) = 612.

La résolution d’équations quadratiques complètes, et cette expression est exactement cela, ne peut pas se faire de la même manière. Pourquoi? Bien que le côté gauche contienne toujours deux facteurs, leur produit n’est pas du tout égal à 0, c’est pourquoi différentes méthodes sont utilisées ici.

Discriminant

Tout d'abord, effectuons les transformations nécessaires, puis apparence de cette expression ressemblera à ceci : x 2 + 16x - 612 = 0. Cela signifie que nous avons reçu une expression sous une forme correspondant au standard spécifié précédemment, où a=1, b=16, c=-612.

Cela pourrait être un exemple de résolution d’équations quadratiques à l’aide d’un discriminant. Ici calculs nécessaires sont réalisés selon le schéma : D = b 2 - 4ac. Cette grandeur auxiliaire permet non seulement de retrouver les grandeurs recherchées dans une équation du second ordre, elle détermine la grandeur options possibles. Si D>0, il y en a deux ; pour D=0, il y a une racine. Dans le cas D<0, никаких шансов для решения у уравнения вообще не имеется.

À propos des racines et de leur formule

Dans notre cas, le discriminant est égal à : 256 - 4(-612) = 2704. Cela suggère que notre problème a une réponse. Si vous connaissez k, la solution des équations quadratiques doit être poursuivie en utilisant la formule ci-dessous. Il permet de calculer les racines.

Cela signifie que dans le cas présenté : x 1 =18, x 2 =-34. La deuxième option dans ce dilemme ne peut pas être une solution, car les dimensions du terrain ne peuvent pas être mesurées en quantités négatives, ce qui signifie que x (c'est-à-dire la largeur du terrain) est de 18 m. À partir de là, nous calculons la longueur : 18. +16=34, et le périmètre 2(34+ 18)=104(m2).

Exemples et tâches

Nous poursuivons notre étude des équations quadratiques. Des exemples et des solutions détaillées de plusieurs d’entre eux seront donnés ci-dessous.

1) 15x2 + 20x + 5 = 12x2 + 27x + 1

Déplaçons tout vers la gauche de l’égalité, effectuons une transformation, c’est-à-dire que nous obtiendrons le type d’équation que l’on appelle habituellement standard et l’assimilerons à zéro.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

En ajoutant des similaires, nous déterminons le discriminant : D = 49 - 48 = 1. Cela signifie que notre équation aura deux racines. Calculons-les selon la formule ci-dessus, ce qui signifie que le premier d'entre eux sera égal à 4/3 et le second à 1.

2) Résolvons maintenant des mystères d'un autre genre.

Voyons s'il y a des racines ici x 2 - 4x + 5 = 1 ? Pour obtenir une réponse complète, réduisons le polynôme à la forme habituelle correspondante et calculons le discriminant. Dans l’exemple ci-dessus, il n’est pas nécessaire de résoudre l’équation quadratique, car ce n’est pas du tout l’essence du problème. Dans ce cas, D = 16 - 20 = -4, ce qui signifie qu’il n’y a vraiment pas de racines.

Théorème de Vieta

Il est pratique de résoudre des équations quadratiques en utilisant les formules ci-dessus et le discriminant, lorsque la racine carrée est extraite de la valeur de ce dernier. Mais cela n’arrive pas toujours. Cependant, il existe de nombreuses façons d'obtenir les valeurs des variables dans ce cas. Exemple : résolution d'équations quadratiques à l'aide du théorème de Vieta. Elle porte le nom d'une personne qui a vécu dans la France du XVIe siècle et qui a fait une brillante carrière grâce à ses talents mathématiques et ses relations à la cour. Son portrait est visible dans l'article.

Le schéma remarqué par le célèbre Français était le suivant. Il a prouvé que les racines de l’équation totalisent numériquement -p=b/a et que leur produit correspond à q=c/a.

Examinons maintenant les tâches spécifiques.

3x2 + 21x-54 = 0

Pour plus de simplicité, transformons l'expression :

x2 + 7x - 18 = 0

Utilisons le théorème de Vieta, cela nous donnera ceci : la somme des racines est -7, et leur produit est -18. De là, nous obtenons que les racines de l'équation sont les nombres -9 et 2. Après vérification, nous nous assurerons que ces valeurs variables correspondent réellement à l'expression.

Graphique et équation parabolique

Les concepts de fonction quadratique et d'équations quadratiques sont étroitement liés. Des exemples en ont déjà été donnés plus tôt. Examinons maintenant quelques énigmes mathématiques plus en détail. Toute équation du type décrit peut être représentée visuellement. Une telle relation, dessinée sous forme de graphique, s’appelle une parabole. Ses différents types sont présentés dans la figure ci-dessous.

Toute parabole a un sommet, c'est-à-dire un point d'où émergent ses branches. Si a>0, ils vont vers l'infini, et quand a<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

Les représentations visuelles des fonctions aident à résoudre toutes les équations, y compris les équations quadratiques. Cette méthode est dite graphique. Et la valeur de la variable x est la coordonnée en abscisse aux points où la ligne graphique coupe 0x. Les coordonnées du sommet peuvent être trouvées en utilisant la formule qui vient d'être donnée x 0 = -b/2a. Et en substituant la valeur résultante dans l'équation originale de la fonction, vous pouvez découvrir y 0, c'est-à-dire la deuxième coordonnée du sommet de la parabole, qui appartient à l'axe des ordonnées.

L'intersection des branches d'une parabole avec l'axe des abscisses

Il existe de nombreux exemples de résolution d'équations quadratiques, mais il existe également des modèles généraux. Regardons-les. Il est clair que l'intersection du graphique avec l'axe 0x pour a>0 n'est possible que si y 0 prend valeurs négatives. Et pour un<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Sinon D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

À partir du graphique de la parabole, vous pouvez également déterminer les racines. L’inverse est également vrai. Autrement dit, s'il n'est pas facile d'obtenir une représentation visuelle d'une fonction quadratique, vous pouvez assimiler le côté droit de l'expression à 0 et résoudre l'équation résultante. Et connaissant les points d'intersection avec l'axe 0x, il est plus facile de construire un graphique.

De l'histoire

En utilisant des équations contenant une variable carrée, autrefois, ils effectuaient non seulement des calculs mathématiques et déterminaient les aires des figures géométriques. Les anciens avaient besoin de tels calculs pour réaliser de grandes découvertes dans les domaines de la physique et de l'astronomie, ainsi que pour faire des prévisions astrologiques.

Comme le suggèrent les scientifiques modernes, les habitants de Babylone ont été parmi les premiers à résoudre des équations quadratiques. Cela s'est produit quatre siècles avant notre ère. Bien entendu, leurs calculs étaient radicalement différents de ceux actuellement acceptés et se sont révélés beaucoup plus primitifs. Par exemple, les mathématiciens mésopotamiens n’avaient aucune idée de l’existence des nombres négatifs. Ils n'étaient pas non plus familiers avec d'autres subtilités que tout écolier moderne connaît.

Peut-être même avant les scientifiques de Babylone, le sage indien Baudhayama a commencé à résoudre des équations quadratiques. Cela s'est produit environ huit siècles avant l'ère du Christ. Certes, les équations du second ordre, les méthodes de résolution qu'il a données, étaient les plus simples. Outre lui, des mathématiciens chinois s’intéressaient également autrefois à des questions similaires. En Europe, les équations quadratiques n'ont commencé à être résolues qu'au début du XIIIe siècle, mais elles ont ensuite été utilisées dans leurs travaux par de grands scientifiques tels que Newton, Descartes et bien d'autres.

Les équations quadratiques sont étudiées en 8e année, il n'y a donc rien de compliqué ici. Il est absolument nécessaire de pouvoir les résoudre.

Une équation quadratique est une équation de la forme ax 2 + bx + c = 0, où les coefficients a, b et c sont des nombres arbitraires et a ≠ 0.

Avant d'étudier des méthodes de résolution spécifiques, notez que toutes les équations quadratiques peuvent être divisées en trois classes :

  1. N'avoir pas de racines ;
  2. Avoir exactement une racine ;
  3. Ils ont deux racines différentes.

C'est une différence importante entre les équations quadratiques et les équations linéaires, où la racine existe toujours et est unique. Comment déterminer le nombre de racines d’une équation ? Il y a une chose merveilleuse à cela - discriminant.

Discriminant

Soit l'équation quadratique ax 2 + bx + c = 0. Alors le discriminant est simplement le nombre D = b 2 − 4ac.

Il faut connaître cette formule par cœur. D’où cela vient n’a plus d’importance maintenant. Une autre chose est importante : par le signe du discriminant, vous pouvez déterminer le nombre de racines d'une équation quadratique. À savoir:

  1. Si D< 0, корней нет;
  2. Si D = 0, il y a exactement une racine ;
  3. Si D > 0, il y aura deux racines.

Attention : le discriminant indique le nombre de racines, et pas du tout leurs signes, comme beaucoup de gens le croient pour une raison quelconque. Jetez un œil aux exemples et vous comprendrez tout vous-même :

Tâche. Combien de racines ont les équations quadratiques :

  1. x 2 − 8x + 12 = 0 ;
  2. 5x2 + 3x + 7 = 0 ;
  3. x2 − 6x + 9 = 0.

Écrivons les coefficients de la première équation et trouvons le discriminant :
une = 1, b = −8, c = 12 ;
D = (−8) 2 − 4 1 12 = 64 − 48 = 16

Le discriminant est donc positif, donc l’équation a deux racines différentes. Nous analysons la deuxième équation de la même manière :
une = 5 ; b = 3 ; c = 7 ;
D = 3 2 − 4 5 7 = 9 − 140 = −131.

Le discriminant est négatif, il n’y a pas de racines. La dernière équation restante est :
une = 1 ; b = −6 ; c = 9 ;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

Le discriminant est nul - la racine sera un.

Veuillez noter que des coefficients ont été notés pour chaque équation. Oui, c’est long, oui, c’est fastidieux, mais on ne va pas mélanger les probabilités et faire des erreurs stupides. Choisissez vous-même : rapidité ou qualité.

D'ailleurs, si vous comprenez, au bout d'un moment, vous n'aurez plus besoin d'écrire tous les coefficients. Vous effectuerez de telles opérations dans votre tête. La plupart des gens commencent à faire cela quelque part après 50 à 70 équations résolues - en général, pas tant que ça.

Racines d'une équation quadratique

Passons maintenant à la solution elle-même. Si le discriminant D > 0, les racines peuvent être trouvées à l'aide des formules :

Formule de base pour les racines d'une équation quadratique

Lorsque D = 0, vous pouvez utiliser n'importe laquelle de ces formules - vous obtiendrez le même nombre, qui sera la réponse. Enfin, si D< 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0 ;
  2. 15 − 2x − x2 = 0 ;
  3. x2 + 12x + 36 = 0.

Première équation :
x 2 − 2x − 3 = 0 ⇒ une = 1 ; b = −2 ; c = −3 ;
D = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ l'équation a deux racines. Trouvons-les :

Deuxième équation :
15 − 2x − x 2 = 0 ⇒ une = −1 ; b = −2 ; c = 15 ;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ l'équation a encore deux racines. Trouvons-les

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \fin(aligner)\]

Enfin, la troisième équation :
x 2 + 12x + 36 = 0 ⇒ une = 1 ; b = 12 ; c = 36 ;
ré = 12 2 − 4 1 36 = 0.

D = 0 ⇒ l'équation a une racine. N’importe quelle formule peut être utilisée. Par exemple, le premier :

Comme vous pouvez le voir sur les exemples, tout est très simple. Si vous connaissez les formules et savez compter, il n'y aura aucun problème. Le plus souvent, des erreurs se produisent lors de la substitution de coefficients négatifs dans la formule. Là encore, la technique décrite ci-dessus vous aidera : regardez la formule littéralement, notez chaque étape - et très bientôt vous vous débarrasserez des erreurs.

Équations quadratiques incomplètes

Il arrive qu'une équation quadratique soit légèrement différente de ce qui est donné dans la définition. Par exemple:

  1. x2 + 9x = 0 ;
  2. X 2 - 16 = 0.

Il est facile de remarquer qu’il manque un des termes dans ces équations. De telles équations quadratiques sont encore plus faciles à résoudre que les équations standards : elles ne nécessitent même pas de calculer le discriminant. Alors, introduisons un nouveau concept :

L'équation ax 2 + bx + c = 0 est appelée une équation quadratique incomplète si b = 0 ou c = 0, c'est-à-dire le coefficient de la variable x ou de l'élément libre est égal à zéro.

Bien entendu, un cas très difficile est possible lorsque ces deux coefficients sont égaux à zéro : b = c = 0. Dans ce cas, l'équation prend la forme ax 2 = 0. Évidemment, une telle équation a une racine unique : x = 0.

Considérons les cas restants. Soit b = 0, alors on obtient une équation quadratique incomplète de la forme ax 2 + c = 0. Transformons-la un peu :

Puisque la racine carrée arithmétique n'existe qu'à partir de non- nombre négatif, la dernière égalité n'a de sens que pour (−c /a) ≥ 0. Conclusion :

  1. Si dans une équation quadratique incomplète de la forme ax 2 + c = 0 l'inégalité (−c /a) ≥ 0 est satisfaite, il y aura deux racines. La formule est donnée ci-dessus ;
  2. Si (−c /a)< 0, корней нет.

Comme vous pouvez le constater, aucun discriminant n'était nécessaire : il n'y a aucun calcul complexe dans les équations quadratiques incomplètes. En fait, il n'est même pas nécessaire de se souvenir de l'inégalité (−c /a) ≥ 0. Il suffit d'exprimer la valeur x 2 et de voir ce qu'il y a de l'autre côté du signe égal. S'il y a nombre positif- il y aura deux racines. S’il est négatif, il n’y aura aucune racine.

Regardons maintenant les équations de la forme ax 2 + bx = 0, dans lesquelles l'élément libre est égal à zéro. Tout est simple ici : il y aura toujours deux racines. Il suffit de factoriser le polynôme :

Sortir le facteur commun des parenthèses

Le produit est nul lorsqu’au moins un des facteurs est nul. C'est de là que viennent les racines. En conclusion, examinons quelques-unes de ces équations :

Tâche. Résoudre des équations quadratiques :

  1. x 2 - 7x = 0 ;
  2. 5x2 + 30 = 0 ;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0 ; x2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Il n'y a pas de racines, parce que un carré ne peut pas être égal à un nombre négatif.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5 ; x 2 = −1,5.

Le discriminant, comme les équations quadratiques, commence à être étudié dans un cours d'algèbre en 8e année. Vous pouvez résoudre une équation quadratique grâce à un discriminant et en utilisant le théorème de Vieta. La méthode d'étude des équations quadratiques, ainsi que des formules discriminantes, est enseignée sans succès aux écoliers, comme beaucoup de choses dans l'éducation réelle. C'est pourquoi ils passent années scolaires, l'éducation de la 9e à la 11e année remplace " enseignement supérieur"et tout le monde regarde à nouveau - "Comment résoudre une équation quadratique ?", "Comment trouver les racines de l'équation ?", "Comment trouver le discriminant ?" Et...

Formule discriminante

Le discriminant D de l'équation quadratique a*x^2+bx+c=0 est égal à D=b^2–4*a*c.
Les racines (solutions) d'une équation quadratique dépendent du signe du discriminant (D) :
D>0 – l'équation a 2 racines réelles différentes ;
D=0 - l'équation a 1 racine (2 racines correspondantes) :
D<0 – не имеет действительных корней (в школьной теории). В ВУЗах изучают комплексные числа и уже на множестве комплексных чисел уравнение с отрицательным дискриминантом имеет два комплексных корня.
La formule de calcul du discriminant est assez simple, c'est pourquoi de nombreux sites Web proposent un calculateur de discriminant en ligne. Nous n'avons pas encore compris ce type de scripts, donc si quelqu'un sait comment l'implémenter, écrivez-nous par e-mail. Cette adresse e-mail est protégée contre les robots spammeurs. Vous devez avoir activé JavaScript pour le visualiser. .

Formule générale pour trouver les racines d'une équation quadratique:

On trouve les racines de l'équation en utilisant la formule
Si le coefficient d'une variable au carré est apparié, alors il est conseillé de calculer non pas le discriminant, mais sa quatrième partie
Dans de tels cas, les racines de l'équation sont trouvées à l'aide de la formule

La deuxième façon de trouver des racines est le théorème de Vieta.

Le théorème est formulé non seulement pour les équations quadratiques, mais aussi pour les polynômes. Vous pouvez le lire sur Wikipédia ou sur d’autres ressources électroniques. Cependant, pour simplifier, considérons la partie qui concerne les équations quadratiques ci-dessus, c'est-à-dire les équations de la forme (a=1)
L'essence des formules de Vieta est que la somme des racines de l'équation est égale au coefficient de la variable, pris avec le signe opposé. Le produit des racines de l’équation est égal au terme libre. Le théorème de Vieta peut être écrit sous forme de formules.
La dérivation de la formule de Vieta est assez simple. Écrivons l'équation quadratique à travers des facteurs simples
Comme vous pouvez le constater, tout ce qui est ingénieux est simple à la fois. Il est efficace d’utiliser la formule de Vieta lorsque la différence de module des racines ou la différence des modules des racines est 1, 2. Par exemple, les équations suivantes, selon le théorème de Vieta, ont des racines




Jusqu’à l’équation 4, l’analyse devrait ressembler à ceci. Le produit des racines de l'équation est 6, donc les racines peuvent être les valeurs (1, 6) et (2, 3) ou des paires de signes opposés. La somme des racines est 7 (le coefficient de la variable de signe opposé). De là, nous concluons que les solutions de l'équation quadratique sont x=2 ; x=3.
Il est plus facile de sélectionner les racines de l'équation parmi les diviseurs du terme libre, en ajustant leur signe afin de remplir les formules de Vieta. Au début, cela semble difficile à faire, mais avec la pratique d'un certain nombre d'équations quadratiques, cette technique s'avérera plus efficace que le calcul du discriminant et la recherche des racines de l'équation quadratique de la manière classique.
Comme vous pouvez le constater, la théorie scolaire de l'étude du discriminant et des méthodes de recherche de solutions à l'équation est dépourvue de sens pratique - "Pourquoi les écoliers ont-ils besoin d'une équation quadratique ?", "Quelle est la signification physique du discriminant ?"

Essayons de comprendre Que décrit le discriminant ?

Dans le cours d'algèbre, ils étudient les fonctions, les schémas d'étude des fonctions et la construction d'un graphe de fonctions. Parmi toutes les fonctions, la parabole occupe une place importante, dont l'équation peut s'écrire sous la forme
Ainsi, la signification physique de l'équation quadratique sont les zéros de la parabole, c'est-à-dire les points d'intersection du graphique de la fonction avec l'axe des abscisses Ox
Je vous demande de vous rappeler les propriétés des paraboles décrites ci-dessous. Le moment viendra de passer des examens, des tests ou des examens d’entrée et vous serez reconnaissant pour le matériel de référence. Le signe de la variable au carré correspond au fait que les branches de la parabole sur le graphique vont monter (a>0),

ou une parabole avec des branches vers le bas (un<0) .

Le sommet de la parabole se situe à mi-chemin entre les racines

Signification physique du discriminant :

Si le discriminant est supérieur à zéro (D>0) la parabole a deux points d'intersection avec l'axe Ox.
Si le discriminant est nul (D=0) alors la parabole au sommet touche l'axe des x.
Et le dernier cas, lorsque le discriminant inférieur à zéro(D<0) – график параболы принадлежит плоскости над осью абсцисс (ветки параболы вверх), или график полностью под осью абсцисс (ветки параболы опущены вниз).

Équations quadratiques incomplètes

L'utilisation d'équations est répandue dans nos vies. Ils sont utilisés dans de nombreux calculs, construction de structures et même dans le sport. L’homme utilisait des équations dans l’Antiquité et depuis lors, leur utilisation n’a fait que croître. Le discriminant permet de résoudre n'importe quelle équation quadratique à l'aide d'une formule générale, qui a la forme suivante :

La formule discriminante dépend du degré du polynôme. La formule ci-dessus convient pour résoudre des équations quadratiques de la forme suivante :

Le discriminant a les propriétés suivantes que vous devez connaître :

* « D » vaut 0 lorsque le polynôme a plusieurs racines (racines égales) ;

* « D » est un polynôme symétrique par rapport aux racines du polynôme et est donc un polynôme dans ses coefficients ; de plus, les coefficients de ce polynôme sont des entiers quelle que soit l'extension dans laquelle sont prises les racines.

Disons que l'on nous donne une équation quadratique de la forme suivante :

1 équation

D'après la formule on a :

Puisque \, l’équation a 2 racines. Définissons-les :

Où puis-je résoudre une équation à l’aide d’un solveur discriminant en ligne ?

Vous pouvez résoudre l’équation sur notre site https://site. Le solveur en ligne gratuit vous permettra de résoudre des équations en ligne de toute complexité en quelques secondes. Tout ce que vous avez à faire est simplement de saisir vos données dans le solveur. Vous pouvez également regarder les instructions vidéo et découvrir comment résoudre l'équation sur notre site Web. Et si vous avez des questions, vous pouvez les poser dans notre groupe VKontakte http://vk.com/pocketteacher. Rejoignez notre groupe, nous sommes toujours heureux de vous aider.

Équation quadratique - facile à résoudre ! *Ci-après dénommé « KU ». Mes amis, il semblerait qu'il n'y ait rien de plus simple en mathématiques que de résoudre une telle équation. Mais quelque chose m'a dit que beaucoup de gens ont des problèmes avec lui. J'ai décidé de voir combien d'impressions à la demande Yandex donne par mois. Voici ce qui s'est passé, regardez :


Qu'est-ce que ça veut dire? Cela signifie qu'environ 70 000 personnes par mois recherchent ces informations, et c'est l'été, et ce qui se passera pendant l'année scolaire - il y aura deux fois plus de demandes. Ce n'est pas surprenant, car les gars et les filles qui ont obtenu leur diplôme il y a longtemps et se préparent à l'examen d'État unifié recherchent ces informations, et les écoliers s'efforcent également de se rafraîchir la mémoire.

Malgré le fait qu'il existe de nombreux sites qui vous expliquent comment résoudre cette équation, j'ai décidé de contribuer et de publier également le matériel. Premièrement, je souhaite que les visiteurs viennent sur mon site en fonction de cette demande ; deuxièmement, dans d'autres articles, lorsque le sujet de « KU » sera abordé, je fournirai un lien vers cet article ; troisièmement, je vais vous en dire un peu plus sur sa solution que ce qui est habituellement indiqué sur d'autres sites. Commençons ! Contenu de l'article :

Une équation quadratique est une équation de la forme :

où les coefficients une,bet c sont des nombres arbitraires, avec a≠0.

DANS cours scolaire le matériel est donné sous la forme suivante - les équations sont conditionnellement divisées en trois classes :

1. Ils ont deux racines.

2. *N'ayez qu'une seule racine.

3. Ils n’ont pas de racines. Il convient particulièrement de noter ici qu'ils n'ont pas de véritables racines

Comment sont calculées les racines ? Juste!

Nous calculons le discriminant. Sous ce mot « terrible » se cache une formule très simple :

Les formules racine sont les suivantes :

*Il faut connaître ces formules par cœur.

Vous pouvez immédiatement écrire et résoudre :

Exemple:


1. Si D > 0, alors l'équation a deux racines.

2. Si D = 0, alors l'équation a une racine.

3. Si D< 0, то уравнение не имеет действительных корней.

Regardons l'équation :


A cet égard, lorsque le discriminant est égal à zéro, le cours scolaire dit qu'on obtient une racine, ici elle est égale à neuf. Tout est correct, c'est vrai, mais...

Cette idée est quelque peu incorrecte. En fait, il y a deux racines. Oui, oui, ne soyez pas surpris, vous obtenez deux racines égales, et pour être mathématiquement précis, alors la réponse devrait écrire deux racines :

x1 = 3 x2 = 3

Mais c'est ainsi - une petite digression. À l’école, vous pouvez l’écrire et dire qu’il n’y a qu’une seule racine.

Maintenant l'exemple suivant :


Comme nous le savons, la racine d’un nombre négatif ne peut pas être prise, il n’y a donc pas de solution dans ce cas.

C'est tout le processus de décision.

Fonction quadratique.

Cela montre à quoi ressemble géométriquement la solution. Ceci est extrêmement important à comprendre (à l'avenir, dans l'un des articles, nous analyserons en détail la solution à l'inégalité quadratique).

C'est une fonction de la forme :

où x et y sont des variables

a, b, c – nombres donnés, avec a ≠ 0

Le graphique est une parabole :

Autrement dit, il s'avère qu'en résolvant une équation quadratique avec « y » égal à zéro, nous trouvons les points d'intersection de la parabole avec l'axe des x. Il peut y avoir deux de ces points (le discriminant est positif), un (le discriminant est nul) et aucun (le discriminant est négatif). Détails sur la fonction quadratique tu peux regarder article d'Inna Feldman.

Regardons des exemples :

Exemple 1 : Résoudre 2x 2 +8 x–192=0

a=2 b=8 c= –192

D = b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Réponse : x 1 = 8 x 2 = –12

*Il était possible de diviser immédiatement les côtés gauche et droit de l'équation par 2, c'est-à-dire de la simplifier. Les calculs seront plus faciles.

Exemple 2 : Décider x2–22 x+121 = 0

a=1 b=–22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

Nous avons trouvé que x 1 = 11 et x 2 = 11

Il est permis d'écrire x = 11 dans la réponse.

Réponse : x = 11

Exemple 3 : Décider x2 –8x+72 = 0

a=1 b= –8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

Le discriminant est négatif, il n’y a pas de solution en nombres réels.

Réponse : pas de solution

Le discriminant est négatif. Il existe une solution !

Nous parlerons ici de la résolution de l'équation dans le cas où un discriminant négatif est obtenu. Connaissez-vous quelque chose sur les nombres complexes ? Je ne parlerai pas ici en détail de pourquoi et où ils sont apparus et de ce qu'ils sont. rôle spécifique et le besoin de mathématiques, c'est un sujet pour un grand article séparé.

Le concept d'un nombre complexe.

Un peu de théorie.

Un nombre complexe z est un nombre de la forme

z = a + bi

où a et b sont des nombres réels, i est ce qu'on appelle l'unité imaginaire.

a+bi – il s’agit d’un NUMÉRO UNIQUE, pas d’un ajout.

L'unité imaginaire est égale à la racine de moins un :

Considérons maintenant l'équation :


On obtient deux racines conjuguées.

Équation quadratique incomplète.

Considérons des cas particuliers, c'est lorsque le coefficient « b » ou « c » est égal à zéro (ou les deux sont égaux à zéro). Ils peuvent être résolus facilement sans aucun problème discriminatoire.

Cas 1. Coefficient b = 0.

L'équation devient :

Transformons :

Exemple:

4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

Cas 2. Coefficient c = 0.

L'équation devient :

Transformons et factorisons :

*Le produit est égal à zéro lorsqu'au moins un des facteurs est égal à zéro.

Exemple:

9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 ou x–5 =0

x1 = 0x2 = 5

Cas 3. Coefficients b = 0 et c = 0.

Ici, il est clair que la solution de l’équation sera toujours x = 0.

Propriétés utiles et modèles de coefficients.

Il existe des propriétés qui permettent de résoudre des équations avec de grands coefficients.

UNx 2 + bx+ c=0 l'égalité est vraie

un + b+ c = 0, Que

- si pour les coefficients de l'équation UNx 2 + bx+ c=0 l'égalité est vraie

un+ s =b, Que

Ces propriétés aident à résoudre un certain type d’équation.

Exemple 1 : 5001 x 2 –4995 x – 6=0

La somme des cotes est de 5001+( 4995)+( 6) = 0, ce qui signifie

Exemple 2 : 2501 x 2 +2507 x+6=0

L’égalité tient un+ s =b, Moyens

Régularités des coefficients.

1. Si dans l'équation ax 2 + bx + c = 0 le coefficient « b » est égal à (a 2 +1) et que le coefficient « c » est numériquement égal au coefficient « a », alors ses racines sont égales

hache 2 + (une 2 +1)∙x+ une= 0 = > x 1 = –une x 2 = –1/une.

Exemple. Considérons l'équation 6x 2 + 37x + 6 = 0.

x1 = –6 x2 = –1/6.

2. Si dans l'équation ax 2 – bx + c = 0 le coefficient « b » est égal à (a 2 +1) et que le coefficient « c » est numériquement égal au coefficient « a », alors ses racines sont égales

hache 2 – (une 2 +1)∙x+ une= 0 = > X 1 = une X 2 = 1/une.

Exemple. Considérons l'équation 15x 2 –226x +15 = 0.

x 1 = 15 x 2 = 1/15.

3. Si dans l'équation. ax 2 + bx – c = 0 coefficient « b » est égal à (a 2 – 1), et coefficient « c » numériquement égal au coefficient « a », alors ses racines sont égales

hache 2 + (une 2 –1)∙x – une= 0 = > x 1 = – une x 2 = 1/une.

Exemple. Considérons l'équation 17x 2 +288x – 17 = 0.

x 1 = – 17 x 2 = 1/17.

4. Si dans l'équation ax 2 – bx – c = 0 le coefficient « b » est égal à (a 2 – 1) et que le coefficient c est numériquement égal au coefficient « a », alors ses racines sont égales

hache 2 – (une 2 –1)∙x – une= 0 = > x 1 = une x 2 = – 1/une.

Exemple. Considérons l'équation 10x 2 – 99x –10 = 0.

x 1 = 10 x 2 = – 1/10

Théorème de Vieta.

Le théorème de Vieta doit son nom au célèbre mathématicien français François Vieta. En utilisant le théorème de Vieta, nous pouvons exprimer la somme et le produit des racines d'une KU arbitraire en termes de ses coefficients.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

Au total, le nombre 14 ne donne que 5 et 9. Ce sont des racines. Avec une certaine habileté, en utilisant le théorème présenté, vous pouvez résoudre oralement de nombreuses équations quadratiques immédiatement.

Le théorème de Vieta, en plus. est pratique dans la mesure où après avoir résolu une équation quadratique de la manière habituelle (via un discriminant), les racines résultantes peuvent être vérifiées. Je recommande de toujours faire cela.

MODE DE TRANSPORT

Avec cette méthode, le coefficient « a » est multiplié par le terme libre, comme s'il lui était « jeté », c'est pourquoi on l'appelle méthode de « transfert ». Cette méthode est utilisée lorsque l'on peut facilement trouver les racines de l'équation à l'aide du théorème de Vieta et, surtout, lorsque le discriminant est un carré exact.

Si UN± b+c≠ 0, alors la technique de transfert est utilisée, par exemple :

2X 2 – 11x+ 5 = 0 (1) => X 2 – 11x+ 10 = 0 (2)

En utilisant le théorème de Vieta dans l'équation (2), il est facile de déterminer que x 1 = 10 x 2 = 1

Les racines résultantes de l'équation doivent être divisées par 2 (puisque les deux ont été « jetées » depuis x 2), on obtient

x1 = 5x2 = 0,5.

Quelle est la justification ? Regardez ce qui se passe.

Les discriminants des équations (1) et (2) sont égaux :

Si vous regardez les racines des équations, vous n'obtenez que des dénominateurs différents, et le résultat dépend précisément du coefficient de x 2 :


Le second (modifié) a des racines 2 fois plus grosses.

On divise donc le résultat par 2.

*Si on relance les trois, on divisera le résultat par 3, etc.

Réponse : x 1 = 5 x 2 = 0,5

Carré. ur-ie et examen d'État unifié.

Je vais vous parler brièvement de son importance - VOUS DEVEZ POUVOIR DÉCIDER rapidement et sans réfléchir, vous devez connaître par cœur les formules des racines et des discriminants. De nombreux problèmes inclus dans les tâches de l'examen d'État unifié se résument à la résolution d'une équation quadratique (y compris les équations géométriques).

Quelque chose à noter !

1. La forme d'écriture d'une équation peut être « implicite ». Par exemple, la saisie suivante est possible :

15+ 9x 2 - 45x = 0 ou 15x+42+9x 2 - 45x=0 ou 15 -5x+10x 2 = 0.

Vous devez le présenter sous une forme standard (afin de ne pas vous tromper lors de la résolution).

2. N'oubliez pas que x est une quantité inconnue et qu'elle peut être désignée par n'importe quelle autre lettre - t, q, p, h et autres.