Меню

Правила обращения с радиоактивными отходами. Способы и порядок захоронения радиоактивных отходов Радиоактивные отходы образуются

Прочие системы автомобиля

Знатоки ценят шампанское дома Фурье. Его получают из винограда, растущего на живописных холмах Шампани. Трудно поверить, что менее чем в 10 км от знаменитых виноградников находится крупнейшее хранилище радиоактивных отходов. Их свозят со всей Франции, доставляют из-за границы и захоранивают на ближайшие сотни лет. Дом Фурье продолжает делать великолепное шампанское, вокруг цветут луга, обстановка контролируется, гарантируется полная чистота и безопасность на полигоне и вокруг него. Такая зеленая лужайка — главная цель строительства захоронений радиоактивных отходов.

Роман Фишман

Что бы ни говорили отдельные горячие головы, можно с уверенностью утверждать, что превратиться во всемирную радиоактивную свалку России в обозримом будущем не грозит. Принятый в 2011 году федеральный закон прямо запрещает перевозку таких отходов через границу. Запрет действует в обе стороны, с единственным исключением, касающимся возвращения источников излучения, которые были произведены в стране и поставлены за рубеж.

Но даже с учетом закона по‑настоящему пугающих отходов атомная энергетика производит немного. Самые активные и опасные радионуклиды содержит отработавшее ядерное топливо (ОЯТ): тепловыделяющие элементы и сборки, в которые они помещаются, излучают даже сильнее свежего ядерного топлива и продолжают выделять тепло. Это не отходы, а ценный ресурс, в нем содержится немало урана-235 и 238, плутоний и ряд других изотопов, полезных для медицины и науки. Все это составляет более 95% ОЯТ и с успехом извлекается на специализированных предприятиях — в России это прежде всего знаменитое ПО «Маяк» в Челябинской области, где сейчас внедряется третье поколение технологий переработки, позволяющее вернуть в работу 97% ОЯТ. Уже скоро производство, эксплуатация и переработка ядерного топлива замкнутся в единый цикл, не выдающий практически никаких опасных веществ.


Однако и без ОЯТ объемы радиоактивных отходов будут составлять тысячи тонн в год. Ведь санитарные правила требуют относить сюда все, что излучает выше определенного уровня или содержит больше положенного количества радионуклидов. В эту группу попадает почти любой предмет, который достаточно долго контактировал с ионизирующим излучением. Детали кранов и машин, работавших с рудой и топливом, воздушные и водные фильтры, провода и оборудование, пустая тара и просто спецодежда, отслужившая свой срок и больше не имеющая ценности. МАГАТЭ (Международное агентство по атомной энергии) разделяет радиоактивные отходы (РАО) на жидкие и твердые, нескольких категорий, начиная от очень низкоактивных и заканчивая высокоактивными. И для каждой приняты свои требования к обращению.

Классификация РАО
Класс 1 Класс 2 Класс 3 Класс 4 Класс 5 Класс 6
Твердые Жидкие

Материалы

Оборудование

Изделия

Отвержденные ЖРО

ВАО с высоким тепловыделением

Материалы

Оборудование

Изделия

Отвержденные ЖРО

ВАО с низким тепловыделением

САО долгоживущие

Материалы

Оборудование

Изделия

Отвержденные ЖРО

САО короткоживущие

НАО долгоживущие

Материалы

Оборудование

Изделия

Биологические объекты

Отвержденные ЖРО

НАО короткоживущие

ОНАО долгоживущие

Органические и неорганические жидкости

САО короткоживущие

НАО долгоживущие

РАО, образующиеся при добыче и переработке урановых руд, минерального и органического сырья с повышенным содержанием природных радионуклидов

Финальная изоляция в пунктах глубинного захоронения с предварительной выдержкой

Финальная изоляция в пунктах глубинного захоронения на глубине до 100 м

Финальная изоляция в пунктах приповерхностного захоронения на уровне земли

Финальная изоляция в существующих пунктах глубинного захоронения

Финальная изоляция в пунктах приповерхностного захоронения

Холодно: переработка

Самые большие экологические ошибки, связанные с атомной промышленностью, были сделаны в первые годы существования отрасли. Еще не представляя всех последствий, сверхдержавы середины ХХ века спешили опередить конкурентов, полнее овладеть силой атома и обращению с отходами не уделяли особого внимания. Однако результаты такой политики стали очевидны довольно скоро, и уже в 1957 году в СССР приняли постановление «О мероприятиях по обеспечению безопасности при работах с радиоактивными веществами», а год спустя открылись первые предприятия по их переработке и хранению.

Часть из предприятий действует до сих пор, уже в структурах Росатома, и одно сохраняет свое старое «серийное» название — «Радон». Полтора десятка предприятий передано в управление специализированной компании РосРАО. Вместе с ПО «Маяк», Горно-химическим комбинатом и другими предприятиями Росатома они лицензированы для обращения с радиоактивными отходами разных категорий. Впрочем, к их услугам прибегают не только атомщики: радиоактивные вещества применяются для самых разных задач, от лечения рака и биохимических исследований до производства радиоизотопных термоэлектрических генераторов (РИТЭГов). И все они, отработав свое, превращаются в отходы.


Большинство из них низкоактивны — и конечно, со временем, по мере распада короткоживущих изотопов становятся все безопаснее. Такие отходы обычно отправляются на подготовленные полигоны для хранения на протяжении десятков или сотен лет. Предварительно их перерабатывают: то, что может гореть, сжигают в печах, очищая дым сложной системой фильтров. Золу, порошки и другие рыхлые компоненты цементируют или заливают расплавленным боросиликатным стеклом. Жидкие отходы умеренных объемов фильтруют и концентрируют упариванием, извлекая из них радионуклиды сорбентами. Твердые сминают в прессах. Все помещают в 100- или 200-литровые бочки и снова прессуют, помещают в контейнеры и еще раз цементируют. «Здесь все очень строго, — рассказал нам заместитель генерального директора РусРАО Сергей Николаевич Брыкин. — В обращении с РАО запрещено все, что не разрешено лицензиями».

Для перевозки и хранения РАО используются специальные контейнеры: в зависимости от активности и вида излучения они могут быть железобетонные, стальные, свинцовые или даже из обогащенного бором полиэтилена. Обработку и упаковку стараются производить на месте с помощью мобильных комплексов, чтобы снизить трудности и риски транспортировки, частично с помощью роботизированной техники. Маршруты перевозки заранее продумывают и согласовывают. Каждый контейнер имеет собственный идентификатор, и судьба их прослеживается до самого конца.


Центр кондиционирования и хранения РАО в губе Андреева на берегу Баренцева моря работает на месте бывшей технической базы Северного флота.

Теплее: хранение

РИТЭГи, о которых мы вспоминали выше, сегодня на Земле почти не применяются. Некогда они обеспечивали питанием автоматические пункты мониторинга и навигации в далеких и труднодоступных точках. Однако многочисленные инциденты с утечками радиоактивных изотопов в окружающую среду и банальным воровством цветмета заставили отказаться от их использования где-либо помимо космических аппаратов. В СССР успели произвести и собрать больше тысячи РИТЭГов, которые демонтированы и продолжают утилизироваться.

Еще большую проблему представляет наследие холодной войны: за десятилетия одних только атомных подлодок было построено почти 270, а сегодня в строю остается менее полусотни, остальные утилизированы или ожидают этой сложной и дорогой процедуры. При этом выгружают отработавшее топливо, а реакторный отсек и два соседних вырезают. С них демонтируют оборудование, дополнительно герметизируют и оставляют храниться на плаву. Так делалось годами, и к началу 2000-х в российском Заполярье и на Дальнем Востоке ржавело около 180 радиоактивных «поплавков». Проблема стояла так остро, что обсуждалась на встрече лидеров стран «Большой восьмерки», которые договорились о международном сотрудничестве в уборке побережья.


Док-понтон для выполнения операций с блоками реакторных отсеков (85 х 31,2 х 29 м). Грузоподъемность: 3500 т; осадка при буксировке: 7,7 м; скорость при буксировке: до 6 узлов (11 км/ч); срок службы: не менее 50 лет. Строитель: Fincantieri. Оператор: Росатом. Место: Сайда Губа в Кольском заливе, рассчитанная на хранение 120 реакторных отсеков.

Сегодня блоки поднимают из воды и очищают, реакторные отсеки вырезают, на них наносят антикоррозийное покрытие. Обработанные упаковки устанавливаются для длительного безопасного хранения на подготовленных бетонированных площадках. На недавно заработавшем комплексе в Сайда Губе в Мурманской области для этого даже снесли сопку, скальное основание которой дало надежную опору для хранилища, рассчитанного на 120 отсеков. Выстроенные в ряд, густо покрашенные реакторы напоминают аккуратную заводскую площадку или склад промышленного оборудования, за которым следит внимательный хозяин.

Такой результат ликвидации опасных радиационных объектов на языке атомщиков называется «коричневой лужайкой» и считается совершенно безопасным, хотя и не очень эстетичным на вид. Идеальная же цель их манипуляций — «зеленая лужайка», наподобие той, которая раскинулась над уже знакомым нам французским хранилищем CSA (Centre de stockage de l’Aube). Водонепроницаемое покрытие и толстый слой специально подобранного дерна превращают крышу заглубленного бункера в поляну, на которой так и хочется прилечь, тем более что это разрешено. Только самым опасным РАО уготована не «лужайка», а мрачная тьма окончательного захоронения.


Горячо: захоронение

Высокоактивные РАО, в том числе отходы переработки ОЯТ, нуждаются в надежной изоляции на десятки и сотни тысяч лет. Отправка отходов в космос слишком дорога, опасна авариями при старте, захоронения в океане или в разломах земной коры чреваты непредсказуемыми последствиями. Первые годы или десятилетия их еще можно выдерживать в бассейнах «мокрых» наземных хранилищ, но затем с ними придется что-то делать. Например, перенести в более безопасное и долговременное сухое — и гарантировать его надежность на сотни и тысячи лет.

«Основная проблема сухих хранилищ — это теплообмен, — объясняет Сергей Брыкин. — Если нет водной среды, высокоактивные отходы нагреваются, что требует специальных инженерных решений». В России такое централизованное наземное хранилище с продуманной системой пассивного воздушного охлаждения работает на Горно-химическом комбинате под Красноярском. Но и это лишь полумера: по‑настоящему надежный могильник должен быть подземным. Тогда защиту ему обеспечат не только инженерные системы, но и геологические условия, сотни метров неподвижной и желательно водонепроницаемой скальной или глинистой породы.

Такое подземное сухое хранилище с 2015 года используется и параллельно продолжает строиться в Финляндии. В Онкало высокоактивные РАО и ОЯТ будут заперты в гранитной скале на глубине порядка 440 м, в медных пеналах, дополнительно изолированных бентонитовой глиной, и сроком не менее 100 тыс. лет. В 2017-м шведские энергетики из SKB объявили о том, что возьмут на вооружение этот метод и возведут собственное «вечное» хранилище под Форсмарком. В США продолжаются дебаты вокруг строительства в пустыне Невады репозитория Юкка-Маунтин, которое уйдет на сотни метров в вулканический горный хребет. Всеобщее увлечение подземными хранилищами можно рассмотреть и с другой стороны: такое надежное и защищенное захоронение может стать хорошим бизнесом.


Тарин Саймон, 2015−3015 годы. Стекло, радиоактивные отходы. Остекловывание радиоактивных отходов запечатывает их внутри твердого инертного вещества на тысячелетия. Американская художница Тарин Саймон использовала эту технологию в работе, посвященной столетию «Черного квадрата» Малевича. Черный стеклянный куб с остеклованными РАО был создан в 2015 году для московского музея «Гараж» и с тех пор хранится на территории завода «Радон» в Сергиевом Посаде. В музей он попадет примерно через тысячу лет, когда станет окончательно безопасен для публики.

От Сибири до Австралии

Во-первых, в будущем технологии могут потребовать новых редких изотопов, которых немало в ОЯТ. Могут появиться и методы их безопасного дешевого извлечения. Во‑вторых, за захоронение высокоактивных отходов многие страны готовы платить уже сейчас. России же вовсе некуда деваться: высокоразвитой атомной отрасли необходим современный «вечный» могильник для таких опасных РАО. Поэтому в середине 2020-х недалеко от Горно-химического комбината должна заработать подземная научно-исследовательская лаборатория.

В гнейсовую, плохо проницаемую для радионуклидов породу уйдут три вертикальные шахты, и на глубине 500 м будет оборудована лаборатория, куда поместят пеналы с электронагревающимися имитаторами упаковок РАО. В будущем спрессованные средне- и высокоактивные отходы, помещенные в специальные упаковки и стальные пеналы, будут укладываться в контейнеры и цементироваться смесью на основе бентонита. Пока же здесь запланировано порядка полутора сотен экспериментов, и лишь после 15−20 лет испытаний и обоснования безопасности лабораторию преобразуют в многолетнее сухое хранилище РАО первого и второго классов — в малонаселенной части Сибири.

Населенность страны — важный аспект всех таких проектов. Люди редко приветствуют создание захоронений РАО в нескольких километрах от собственного дома, и в густонаселенной Европе или Азии непросто найти место для стройки. Поэтому ими активно стараются заинтересовать такие малонаселенные страны, как Россия или Финляндия. С недавних пор к ним присоединилась и Австралия с ее богатыми урановыми рудниками. По словам Сергея Брыкина, страна выдвинула предложение по возведению на ее территории международного могильника под эгидой МАГАТЭ. Власти рассчитывают, что это принесет дополнительные деньги и новые технологии. Но тогда России стать всемирной радиоактивной свалкой точно не грозит.

Статья «Зеленая лужайка над атомным могильником» опубликована в журнале «Популярная механика» (№3, Март 2018).

Радиоактивные отходы (РАО) – побочные продукты технической деятельности, содержащие биологически опасные радионуклиды. РАО образуются:

  • на всех этапах атомной энергетики (от производства топлива до работы ядерных энергетических установок (ЯЭУ), в том числе атомных электростанций (АЭС);
  • при производстве, использовании и уничтожении ядерного оружия при производстве и применении радиоактивных изотопов.

РАО классифицируют по различным признакам (рис. 1): по агрегатному состоянию, по составу (виду) излучения, по времени жизни (периоду полураспада Т 1/2), по активности (интенсивности излучения).

Среди РАО наиболее распространенными по агрегатному состоянию считаются жидкие и твердые, в основном возникающие при работе атомных электростанций, других ЯЭУ и на радиохимических заводах по получению и переработке ядерного топлива. Газообразные РАО образуются в основном при работе АЭС, радиохимических заводов по регенерации топлива, а также при пожарах и других аварийных ситуациях на ядерных объектах.

Радионуклиды, содержащиеся в РАО, претерпевают спонтанный (самопроизвольный) распад, при котором происходит один (или последовательно несколько) из видов излучений: a -излучение (поток a -частиц – дважды ионизированных атомов гелия), b -излучение (поток электронов), g -излучение (жесткое коротковолновое электромагнитное излучение), нейтронное излучение.

Для процессов радиоактивного распада характерен экспоненциальный закон уменьшения во времени числа радиоактивных ядер, при этом продолжительность жизни радиоактивных ядер характеризуется периодом полураспада Т 1/2 – промежутком времени, за который число радионуклидов уменьшится в среднем наполовину. Периоды полураспада некоторых радиоизотопов, образующихся при распаде основного ядерного топлива – урана-235 – и представляющих наибольшую опасность для биологических объектов, приведены в таблице.

Таблица

Периоды полураспада некоторых радиоизотопов

США, активно проводившие в свое время испытания атомного оружия в Тихом океане, использовали один из островов для захоронения РАО. Складируемые на острове контейнеры с плутонием были закрыты мощными железобетонными панцирями с надписями-предостережениями, видимыми за несколько миль: держаться подальше от этих мест в течение 25 тыс. лет! (Напомним, что возраст человеческой цивилизации – 15 тыс. лет.) Некоторые контейнеры под влиянием непрекращающихся радиоактивных распадов разрушились, уровень радиации в прибрежных водах и донных породах превышает допустимые нормы и опасен для всего живого.

Радиоактивные излучения вызывают ионизацию атомов и молекул вещества, в том числе вещества живых организмов. Механизм биологического действия радиоактивных излучений сложен и до конца не изучен. Ионизация и возбуждение атомов и молекул в живых тканях, происходящие при поглощении ими излучений, лишь начальный этап в сложной цепи последующих биохимических превращений. Установлено, что ионизация приводит к разрыву молекулярных связей, изменению структуры химических соединений и в конечном итоге к разрушению нуклеиновых кислот и белка. Под действием радиации поражаются клетки, прежде всего их ядра, нарушаются способность клеток к нормальному делению и обмен веществ в клетках.

Наиболее чувствительны к радиационному воздействию кроветворные органы (костный мозг, селезенка, лимфатические железы), эпителий слизистых оболочек (в частности, кишечника), щитовидная железа. В результате действия радиоактивных излучений на органы возникают тяжелейшие заболевания: лучевая болезнь, злокачественные опухоли (нередко со смертельным исходом). Облучение оказывает сильное влияние на генетический аппарат, приводя к появлению потомства с уродливыми отклонениями или врожденными заболеваниями.

Рис. 2

Специфической особенностью радиоактивных излучений является то, что они не воспринимаются органами чувств человека и даже при смертельных дозах не вызывают у него болевых ощущений в момент облучения.

Степень биологического воздействия радиации зависит от вида излучения, его интенсивности и продолжительности воздействия на организм.

Единица радиоактивности в системе единиц СИ – беккерель (Бк): 1 Бк соответствует одному акту радиоактивного распада в секунду (внесистемная единица – кюри (Ки): 1 Ки = 3,7 10 10 актов распада за 1 с).

Поглощенная доза (или доза излучения ) – энергия любого вида излучения, поглощенная 1 кг вещества. Единица измерения дозы в системе СИ – грей (Гр): при дозе 1 Гр в 1 кг вещества при поглощении радиации выделяется энергия в 1 Дж (внесистемная единица – рад : 1 Гр = 100 рад, 1 рад = 1/100 Гр).

Радиоактивная чувствительность живых организмов и их органов различна: смертельная доза для бактерий составляет 10 4 Гр, для насекомых – 10 3 Гр, для человека – 10 Гр. Максимальная доза излучения, не причиняющая вреда организму человека при многократном действии, – 0,003 Гр в неделю, при единовременном действии – 0,025 Гр.

Эквивалентная доза излучения – основная дозиметрическая единица в области радиационной безопасности, введена для оценки возможного ущерба здоровью человека от хронического воздействия. Единица эквивалентной дозы в системе СИ – зиверт (Зв): 1 Зв – доза излучения любого вида, производящая такое же действие, как образцовое рентгеновское излучение в 1 Гр, или в 1 Дж/кг, 1 Зв = 1 Гр = 1 Дж/кг (внесистемная единица – бэр (биологический эквивалент рентгена), 1 Зв = 100 бэр, 1 бэр = 1/100 Зв).

Энергия источника ионизирующего излучения (ИИИ) измеряется обычно в электронвольтах (эВ): 1 эВ = 1,6 10 –19 Дж, для человека допустимо получать в год от ИИИ не более 250 эВ (разовая доза – 50 эВ).

Единица измерения рентген (Р) используется для характеристики состояния среды, подвергнувшейся радиоактивному загрязнению: 1 Р соответствует образованию в 1 см 3 воздуха при нормальных условиях 2,082 млн пар ионов обоих знаков, или 1 Р = 2,58 10 –4 Кл/кг (Кл – кулон).

Естественный радиоактивный фон – допустимая мощность эквивалентной дозы от естественных источников радиации (поверхности Земли, атмосферы, воды и т. д.) составляет в России 10–20 мкР/ч (10–20 мкбэр/ч, или 0,1–0,2 мкЗв/ч).

Радиоактивное заражение имеет глобальный характер не только по пространственным масштабам своего влияния, но и по времени действия, угрожая жизни людей в течение многих десятилетий (последствия кыштымской и чернобыльской аварий) и даже столетий. Так, основная «начинка» атомных и водородных бомб – плутоний-239 (Рu-239) – имеет период полураспада 24 тыс. лет. Даже микрограммы этого изотопа, попав в организм человека, вызывают раковые заболевания различных органов; три «апельсина» из плутония-239 потенциально могут уничтожить все человечество без всяких ядерных взрывов.

Ввиду безусловной опасности РАО для всех живых организмов и для биосферы в целом они нуждаются в дезактивации и (или) тщательном захоронении, что до сих пор является нерешенной проблемой. Проблема борьбы с радиоактивным загрязнением окружающей среды выдвигается на первый план среди других экологических проблем ввиду его огромных масштабов и особо опасных последствий. По мнению известного эколога А.В.Яблокова, «экологическая проблема № 1 в России – ее радиоактивное заражение».

Неблагоприятная радиологическая обстановка в отдельных регионах мира и России – результат прежде всего многолетней гонки вооружений в период холодной войны и создания оружия массового поражения.

Для производства оружейного плутония (Рu-239) в 1940-е гг. были построены первые ЯЭУ – реакторы (для атомного оружия требуются десятки тонн Рu-239; одну тонну этой «взрывчатки» производит ядерный реактор на медленных нейтронах мощностью 1000 МВт – такую мощность имеет один блок обычной АЭС типа Чернобыльской). Испытания ядерными державами (США, СССР, а затем Россией, Францией и другими странами) ядерного оружия в атмосфере и под водой, подземные ядерные взрывы в «мирных» целях, на которые сейчас наложен мораторий, привели к сильному загрязнению всех компонентов биосферы.

По программе «Мирный атом» (термин предложен американским президентом Д.Эйзенхауэром) в 1950-е гг. строительство АЭС началось сначала в США и СССР, а затем и в других странах. В настоящее время доля АЭС в производстве электрической энергии в мире составляет 17% (в структуре электроэнергетики России на долю АЭС приходится 12%). В России девять АЭС, из которых восемь расположены в европейской части страны (все станции были построены еще в период существования СССР), в том числе самая крупная – Курская – мощностью 4000 МВт.

Помимо арсенала ядерного оружия (бомб, мин, боеголовок), ЯЭУ, производящих взрывчатое вещество, и АЭС, источниками радиоактивного заражения окружающей среды в России (и на прилегающих к ней территориях) являются:

  • атомный ледокольный флот, самый мощный в мире;
  • подводные и надводные военные корабли с силовыми ЯЭУ (и несущие ядерное оружие);
  • судоремонтные и судостроительные заводы таких кораблей;
  • предприятия, занимающиеся переработкой и утилизацией радиоактивных отходов военно-промышленного комплекса (в том числе списанных подводных лодок) и АЭС;
  • затонувшие атомные корабли;
  • космические аппараты с ЯЭУ на борту;
  • места захоронения РАО.

К этому перечню следует добавить, что до сих пор радиационная обстановка в России определяется последствиями аварий, произошедших в 1957 г. на производственном объединении (ПО) «Маяк» (Челябинск-65) в Кыштыме (Южный Урал) и в 1986 г. на Чернобыльской АЭС (ЧАЭС) 1 .

До сих пор радиоактивному загрязнению в результате аварии на Чернобыльской АЭС подвержены сельскохозяйственные угодья в Республике Мордовия и 13 областях Российской Федерации на площади 3,5 млн га. (О последствиях кыштымской аварии сказано ниже.)

Общая площадь радиационно дестабилизированной территории России превышает 1 млн км 2 с числом проживающих на ней более 10 млн человек. В настоящее время на территории России суммарная активность незахороненных РАО составляет более 4 млрд Ки, что эквивалентно по последствиям восьмидесяти чернобыльским катастрофам.

Наиболее неблагоприятная радиационная экологическая обстановка сложилась на севере европейской территории России, в Уральском районе, на юге Западно- и Восточно-Сибирского районов, в местах базирования Тихоокеанского флота.

Мурманская область по количеству ядерных объектов на душу населения превосходит все другие области и страны. Здесь широко распространены объекты, применяющие различные ядерные технологии. Из гражданских объектов это прежде всего Кольская АЭС (КАЭС), имеющая четыре энергоблока (два из них приближаются к выработке ресурса). Около 60 предприятий и учреждений используют различные радиоизотопные приборы технологического контроля. К мурманскому «Атомфлоту» приписано семь ледоколов и один лихтеровоз, на которых установлено 13 реакторов.

Основное количество ядерных объектов связано с вооруженными силами. Северный флот имеет на своем вооружении 123 атомных судна с 235 ядерными реакторами; береговые батареи включают в общей сложности 3–3,5 тыс. ядерных боеголовок.

Добыча и переработка ядерного сырья проводится на Кольском полуострове двумя специализированными горно-обогатительными комбинатами. Радиоактивные отходы, образующиеся при производстве ядерного топлива, при эксплуатации КАЭС и судов с ЯЭУ, накапливаются непосредственно на территории КАЭС и на специальных предприятиях, в том числе на военных базах. Низкоактивные РАО с гражданских предприятий захораниваются под Мурманском; отходы с КАЭС после выдержки на станции направляются на переработку на Урал; часть РАО военного флота временно хранится на плавучих базах.

Принято решение о создании специальных могильников РАО для нужд региона, в которых будут захораниваться уже накопленные отходы и вновь образующиеся, в том числе те, что будут образовываться при выводе из эксплуатации первой очереди КАЭС и судовых ЯЭУ.

В Мурманской и Архангельской областях ежегодно образуется до 1 тыс. м 3 твердых и 5 тыс. м 3 жидких РАО. Указанный уровень отходов удерживается последние 30 лет.

С конца 1950-х гг. по 1992 г. Советским Союзом в Баренцевом и Карском морях были захоронены твердые и жидкие РАО суммарной активностью 2,5 млн Ки, в том числе 15 реакторов с атомных подводных лодок (АПЛ), три реактора с ледокола «Ленин» (из них 13 аварийных реакторов АПЛ, в том числе шесть с невыгруженным ядерным топливом). Затопление ядерных реакторов и жидких РАО происходило и на Дальнем Востоке: в Японском и Охотском морях и у берегов Камчатки.

Опасную радиологическую обстановку создают аварии на АПЛ. Из них наиболее известная, получившая мировой резонанс, трагедия АПЛ «Комсомолец» (7 апреля 1989 г.), в результате которой погибло 42 члена экипажа, а лодка легла на грунт на глубине 1680 м вблизи острова Медвежий в Баренцевом море в 300 морских милях от побережья Норвегии. В активной зоне реактора лодки содержится примерно 42 тыс. Ки стронция-90 и 55 тыс. Ки цезия-137. Кроме того, на лодке есть ядерные боезапасы с плутонием-239.

Район северной Атлантики, где произошла катастрофа, – один из наиболее биологически продуктивных в Мировом океане, имеет особое экономическое значение и входит в сферу интересов России, Норвегии и ряда других стран. Результаты анализов показали, что пока выход радионуклидов с лодки во внешнюю среду незначителен, но в районе затопления формируется зона загрязнения. Этот процесс может иметь импульсный характер, особенно опасно при этом загрязнение плутонием-239, содержащимся в боезарядах лодки. Перенос радионуклидов по трофической цепи морская вода–планктон–рыба грозит серьезными экологическими и политико-экономическими последствиями.

На Южном Урале в Кыштыме расположено ПО «Маяк» (Челябинск-65), где с конца 1940-х гг. производится регенерация отработанного ядерного топлива. До 1951 г. возникающие в ходе переработки жидкие РАО просто сливались в речку Теча. Через сеть рек: Теча–Исеть–Обь – происходил вынос радиоактивных веществ в Карское море и с морскими течениями в другие моря Арктического бассейна. Хотя впоследствии такой сброс был прекращен, спустя более 40 лет концентрация радиоактивного стронция-90 на отдельных участках реки Теча превышала фоновую в 100–1000 раз. С 1952 г. ядерные отходы стали сбрасывать в озеро Карачай (названное техническим водоемом № 3) площадью в 10 км 2 . За счет тепла, выделяемого отходами, озеро в конце концов пересохло. Началась засыпка озера грунтом и бетоном; для окончательной засыпки, по расчетам, еще потребуется ~800 тыс. м скального грунта при стоимости работ 28 млрд рублей (в ценах 1997 г.). Однако под озером образовалась линза, заполненная радионуклидами, суммарная активность которых составляет 120 млн Ки (почти в 2,5 раза выше, чем активность излучения при взрыве 4-го энергоблока ЧАЭС).

Недавно стало известно, что в 1957 г. на ПО «Маяк» произошла серьезная радиационная авария: в результате взрыва емкости с РАО образовалось облако с радиоактивностью 2 млн Ки, растянувшееся на 105 км в длину и 8 км в ширину. Серьезному радиационному заражению (примерно 1/3 чернобыльского) подверглась площадь в 15 тыс. км 2 , на которой проживало более 200 тыс. человек. На радиационно зараженной территории был создан заповедник, где в течение десятков лет проводились наблюдения за живым миром в условиях повышенной радиации. К сожалению, данные этих наблюдений считались секретными, что не позволило дать необходимые медико-биологические рекомендации при ликвидации аварии на ЧАЭС. Аварии на «Маяке» происходили много раз, последняя по времени – в 1994 г. Тогда же в результате частичного разрушения хранилища РАО вблизи Петропавловска-Камчатского произошло временное повышение радиации по сравнению с фоновой в 1000 раз.

До сих пор на ПО «Маяк» ежегодно образуется до 100 млн Ки жидких РАО, часть которых просто сбрасывают в поверхностные водоемы. Твердые РАО складывают в могильники траншейного типа, не отвечающие требованиям безопасности, в результате чего радиоактивно загрязнено более 3 млн га земель. В зоне влияния ПО «Маяк» уровни радиоактивного загрязнения воздуха, воды и почвы в 50–100 раз выше средних значений по стране; отмечено возрастание количества онкологических заболеваний и детских лейкозов. На предприятии начаты строительство комплексов по остекловыванию высокоактивных и битумированию среднеактивных РАО, а также опытная эксплуатация металлобетонного контейнера для долговременного хранения отработанного ядерного топлива реакторов серии РБМК-1000 (подобного типа реакторы были установлены на ЧАЭС).

Суммарная радиоактивность имеющихся РАО в челябинской зоне, по некоторым оценкам, достигает огромной цифры – 37 млрд ГБк. Этого количества достаточно, чтобы превратить всю территорию бывшего СССР в аналог чернобыльской зоны отселения.

Другой очаг «радиоактивной напряженности» в стране – горно-химический комбинат (ГХК) по производству оружейного плутония и переработке РАО, расположенный в 50 км от Красноярска. На поверхности это город без определенного официального названия (Соцгород, Красноярск-26, Железногорск) со 100-тысячным населением; сам комбинат расположен глубоко под землей. Кстати, подобные объекты имеются (по одному) в США, Великобритании, Франции; ведется строительство такого объекта в Китае. О Красноярском ГХК, естественно, мало что известно, кроме того, что переработка ввозимых из-за границы РАО приносит доход 500 тыс. долларов за 1 т отходов. По свидетельству специалистов, радиационная обстановка на ГХК измеряется не в мкР/ч, а в мР/с! В течение десятков лет комбинат закачивает жидкие РАО в глубинные горизонты (по данным на 1998 г., их закачено ~50 млн м 3 с активностью 800 млн Ки), что грозит негативными последствиями как окрестностям Красноярска, так и Енисею – влияние сброса ГХК на воды Енисея прослеживается на расстоянии свыше 800 км.

Впрочем, захоронение высокоактивных РАО в подземные горизонты применяется и в других странах: в США, например, захоронение РАО производят в глубоких соляных копях, а в Швеции – в скальных породах.

Радиоактивное загрязнение окружающей среды атомными электростанциями возникает не только в результате чрезвычайных обстоятельств, а достаточно регулярно. Например, в мае 1997 г. во время технологического ремонта на Курской АЭС произошла опасная утечка в атмосферу цезия-137.

Предприятия атомной отрасли промышленности имеют дело с производством, применением, хранением, транспортировкой и захоронением радиоактивных веществ. Другими словами, образование РАО сопровождает все этапы топливного цикла атомной энергетики (рис. 2), что предъявляет особые требования к обеспечению радиационной безопасности.

Урановую руду добывают на рудниках подземным или открытым способом. Природный уран представляет собой смесь изотопов: урана-238 (99,3%) и урана-235 (0,7%). Поскольку основным ядерным горючим является уран-235, после первичной переработки руда поступает на обогатительный завод, где содержание урана-235 в руде доводится до 3–5%. Химическая переработка топлива заключается в получении обогащенного гексафторида урана 235 UF 6 для последующего производства твэлов (тепловыделяющих элементов).

Разработка урановых месторождений, как и любая другая отрасль горнодобывающей промышленности, ухудшает окружающую среду: выводятся из хозяйственного пользования значительные территории, изменяются ландшафт и гидрологический режим, происходит загрязнение воздуха, почвы, поверхностных и подземных вод радионуклидами. Количество РАО на стадии первичной переработки природного урана очень велико и составляет 99,8%. В России добыча и первичная переработка урана осуществляется только на одном предприятии – Приаргунском горно-химическом объединении. На всех работавших до последнего времени предприятиях по добыче и переработке урановых руд в отвалах и хвостохранилищах находится 108 м 3 РАО с активностью 1,8 10 5 Ки.

Твэлы, представляющие собой металлические стержни, в которых находится ядерное топливо (3% урана-235), размещаются в активной зоне реактора АЭС. Возможны различные виды цепных реакций деления урана-235 (различие в образующихся осколках и числе испускаемых нейтронов), например, такие:

235 U + 1 n ® 142 Ba + 91 Kr + 31 n ,
235 U + 1 n
® 137 Te + 97 Zr + 21 n ,
235 U + 1 n
® 140 Xe + 94 Sr + 21 n .

Тепло, выделяющееся при делении урана, нагревает воду, протекающую через активную зону и омывающую стержни. Примерно через три года содержание урана-235 в твэлах снижается до 1%, они становятся неэффективными источниками тепла и требуют замены. Каждый год треть твэлов удаляется из активной зоны и заменяется новыми: для типичной АЭС с мощностью 1000 МВт это означает ежегодное удаление 36 т твэлов.

В ходе ядерных реакций твэлы обогащаются радионуклидами – продуктами деления урана-235, а также (через серию b-распадов) плутонием-239:

238 U + 1 n ® 239 U(b ) ® 239 Np(b ) ® 239 Pu.

Отработанные твэлы транспортируются из активной зоны по подводному каналу в хранилища, заполненные водой, где хранятся в стальных пеналах несколько месяцев, пока большинство высокотоксичных радионуклидов (в частности, наиболее опасный йод-131) не распадется. После этого твэлы направляются на заводы по регенерации топлива, например для получения плутониевых сердечников для ядерных реакторов на быстрых нейтронах или оружейного плутония.

Жидкие отходы ядерных реакторов (в частности, вода первого контура, которая должна обновляться) после переработки (выпаривания) помещают в бетонные хранилища, расположенные на территории АЭС.

Определенное количество радионуклидов при работе АЭС выделяется в воздух. Радиоактивный йод-135 (один из главных продуктов распада в работающем реакторе) не накапливается в отработанном ядерном топливе, поскольку его период полураспада составляет всего 6,7 ч, но в результате последующих радиоактивных распадов превращается в радиоактивный газ ксенон-135, активно поглощающий нейтроны и потому препятствующий цепной реакции. Для предотвращения «ксенонового отравления» реактора ксенон удаляют из реактора через высокие трубы.

Об образовании отходов на этапах переработки и хранения отработанного ядерного топлива уже говорилось. К сожалению, все существующие и применяемые в мире методы обезвреживания РАО (цементирование, остекловывание, битумирование и др.), а также сжигание твердых РАО в керамических камерах (как на НПО «Радон» в Московской области) неэффективны и представляют значительную опасность для окружающей среды.

Особенно острой проблема утилизации и захоронения РАО атомных электростанций становится в настоящее время, когда наступает время демонтажа большинства АЭС в мире (по данным МАГАТЭ 2 , это более 65 реакторов АЭС и 260 реакторов, использующихся в научных целях). Отметим, что за время работы АЭС все элементы станции становятся радиоактивно опасными, особенно металлические конструкции зоны реакторов. Демонтаж АЭС по стоимости и срокам сравним с их строительством, при этом до сих пор нет приемлемой научно-технической и экологической технологии проведения демонтажа. Альтернатива демонтажу – герметизация станции и ее охрана в течение 100 и более лет.

Еще до прекращения пожара на ЧАЭС началась прокладка туннеля под реактор, создание под ним выемки, которую затем заполнили многометровым слоем бетона. Бетоном был залит и блок, и прилегающие к нему территории – это «чудо строительства» (и пример героизма без кавычек) ХХ в. получило название «саркофаг». Взорвавшийся 4-й энергоблок ЧАЭС до сих пор представляет собой крупнейшее в мире и опаснейшее плохо обустроенное хранилище РАО!

При использовании радиоактивных материалов в медицинских и других научно-исследовательских учреждениях образуется значительно меньшее количество РАО, чем в атомной отрасли промышленности и военно-промышленном комплексе – это несколько десятков кубических метров отходов в год. Однако применение радиоактивных материалов расширяется, а вместе с ним возрастает объем отходов.

Проблема РАО – составная часть «Повестки дня на XXI век»», принятой на Всемирной встрече на высшем уровне по проблемам Земли в Рио-де-Жанейро (1992) и «Программы действий по дальнейшему осуществлению “Повестки дня на ХХI век”», принятой Специальной сессией Генеральной Ассамблеи Организации Объединенных Наций (июнь 1997 г.). В последнем документе, в частности, намечена система мер по совершенствованию методов обращения с радиоактивными отходами, по расширению международного сотрудничества в этой области (обмен информацией и опытом, помощь и передача соответствующих технологий и др.), по ужесточению ответственности государств за обеспечение безопасного хранения и удаления РАО.

В «Программе действий...» констатируется ухудшение общих тенденций в области устойчивого развития мира, но выражается надежда, что к следующему международному экологическому форуму, намеченному на 2002 год, будет отмечен осязаемый прогресс в обеспечении устойчивого развития, направленного на создание благоприятных условий жизни будущих поколений.

Е.Э.Боровский

________________________________
1 Все приведенные ниже данные взяты из материалов открытых публикаций в государственных докладах «О состоянии окружающей природной среды Российской Федерации» Государственного комитета РФ по охране окружающей среды и в российской экологической газете «Зеленый мир» (1995–1999 гг.).
2 Международное агентство по атомной энергии.

Радиоактивные отходы (РАО) – это те вещества, которые содержат радиоактивные элементы и в дальнейшем не могут использоваться вторично, так как не имеют практической ценности. Они образуются при добыче и переработке радиоактивной руды, при работе оборудования, выделяющего тепло, при утилизации ядерных отходов.

Виды и классификация радиоактивных отходов

По видам РАО разделяют:

  • по состоянию – твердые, газообразные, жидкие;
  • по удельной активности – высокоактивные, средней активности, низко активные, очень низкой активности
  • по типам – удаляемые и особые;
  • по сроку полураспада радионуклидов – долго- и короткоживущие;
  • по элементам ядерного типа – с их наличием, с отсутствием;
  • по добыче – при переработке урановых руд, при добыче минерального сырья.

Данная классификация актуальна и для России, и приняты на международном уровне. В целом разделение на классы не является окончательным, оно требует согласования с различными национальными системами.

Освобожденные от контроля

Существуют виды радиоактивных отходов, в которых совсем низкая концентрация радионуклидов. Они практически не несут опасности для окружающей среды. Такие вещества относятся к освобожденной категории. Ежегодное количество облучения от них не превышает уровня 10 мк3в.

Правила обращения с РАО

Радиоактивные вещества разделяются на классы не только для определения уровня опасности, но и для разработки правил обращения с ними:

  • необходимо обеспечить защиту человека, который работает с РАО;
  • следует повышать защиту окружающей среды от опасных веществ;
  • контролировать процесс обезвреживания отходов;
  • указывать уровень облучения на каждом могильнике на основе документов;
  • контролировать накопление и использование радиоактивных элементов;
  • в случае опасности нужно предотвращать аварии;
  • в чрезвычайных случаях необходимо устранять все последствия.

В чем опасность РАО

Чтобы предотвратить такой исход, все предприятия, использующие радиоактивные элементы, обязуются применять системы фильтрации, контролировать деятельность производства, обеззараживать и утилизировать отходы. Это помогает предотвратить экологическую катастрофу.

Уровень опасности РАО зависит от нескольких факторов. Прежде всего, это количество отходов в атмосфере, мощность радиации, площадь зараженной территории, количество людей, которые на ней обитают. Поскольку эти вещества смертельно опасные, нужно в случае аварии ликвидировать катастрофу и эвакуировать население с территории. Также важно предотвратить и остановить перемещение РАО на другие территории.

Правила хранения и перевозки

Предприятие, работающее с радиоактивными веществами, должно обеспечить надежное хранение отходов. Оно предполагает сбор РАО, их передачу на захоронение. Необходимые для хранения средства и способы устанавливаются документами. Для них изготавливают специальные контейнеры из резины, бумаги и пластмассы. Также они сберегаются в холодильниках, металлических барабанах. Перевозка РАО осуществляется в специальных герметичных емкостях. В транспорте они должны надежно фиксироваться. Транспортировку могут осуществлять только те компании, которые имеют на это специальную лицензию.

Переработка

Выбор методов переработки зависит от особенностей отходов. Некоторые виды мусора измельчают и прессуют, чтобы оптимизировать объем отходов. Определенные остатки принято сжигать в печи. Переработка РАО должна соответствовать следующим требованиям:

  • изоляция веществ от воды и других продуктов;
  • устранить облучение;
  • изолировать влияние на сырье и полезные ископаемые;
  • оценить целесообразность переработки.

Сбор и удаление

Сбор и удаление РАО должен производиться в местах, где отсутствуют не радиоактивные элементы. При этом нужно учитывать агрегатное состояние, категорию отходов, их свойства, материалы, время полураспада радионуклидов, потенциальную угрозу вещества. В связи с этим нужно разработать стратегию обращения с РАО.

Для сбора и удаления нужно применять специализированное оборудование. Специалисты утверждают, что данные операции возможны только средне и низко активными веществами. Во время процесса каждый этап должен контролироваться, чтобы предотвратить экологическую катастрофу. Даже маленькая ошибка способна привести к аварии, загрязнению окружающей среды и гибели огромного количества людей. На устранение влияния радиоактивных веществ и восстановление природы понадобится много десятилетий.

Вывоз, переработка и утилизация отходов с 1 по 5 класс опасности

Работаем со всеми регионами России. Действующая лицензия. Полный комплект закрывающих документов. Индивидуальный подход к клиенту и гибкая ценовая политика.

С помощью данной формы вы можете оставить заявку на оказание услуг, запросить коммерческое предложение или получить бесплатную консультацию наших специалистов.

Отправить

Сбор, модификация и захоронение радиоактивных отходов должны производиться отдельно от остальных видов утильсырья. Сбрасывание их в водоемы запрещено, иначе последствия будут очень печальными. Радиоактивными называют отходы, не представляющие для дальнейшего производства практической ценности. Они включают в себя совокупность радиоактивных химических элементов. Согласно законодательству России, последующее использование подобных соединений запрещено.

Перед началом процесса утилизации, РАО необходимо рассортировать по степени радиоактивности, форме и периоду распада. В дальнейшем, для уменьшения объемов опасных изотопов и нейтрализации радионуклидов, их подвергают обработке с помощью сжигания, выпаривания, прессовки и фильтрации.

Последующая обработка заключается в осуществлении фиксации жидких отходов с помощью цемента или битума с целью их отвердения, либо остекловывании высокоактивных РАО.

Зафиксированные изотопы помещают в специальные сложно сконструированные контейнеры с толстыми стенками для дальнейшей их транспортировки к месту хранения. С целью повышения безопасности, их снабжают дополнительной упаковкой.

Общая характеристика

Радиоактивные отходы могут образоваться из различных источников, иметь разнообразную форму и свойства.

К важным характеристикам радиоактивного мусора относят:

  • Концентрация. Параметр, показывающий величину удельной активности. То есть это та активность, которая приходится на одну единицу массы. Наиболее популярная единица измерения Ки/Т. Соответственно, чем больше эта характеристика, тем опаснее последствия может принести за собой подобный мусор.
  • Период полураспада. Продолжительность распада половины атомов в радиоактивном элементе. Стоит заметить, что чем быстрее этот период, тем больше энергии выделяет мусор, принося больше вреда, но в этом случае вещество быстрее теряет свойства.

Вредные вещества могут иметь разную форму, различают три основных агрегатных состояния:

  • Газообразная. Как правило, сюда включаются выбросы из вентиляционных установок организаций, занимающиеся непосредственной обработкой радиоактивных материалов.
  • В жидких формах. Это могут быть отходы жидких типов, которые образовались во время переработки уже использованного топлива. Подобный мусор отличается высокой активностью, тем самым способен нанести сильный вред окружающей среде.
  • Твердая форма. Это стекло и стеклянная посуда из больниц и исследовательских лабораторий.

Хранение РАО

Собственником пункта хранения РАО в России может быть как юридическое лицо, так и федеральный орган власти. На временное хранение радиоактивные отходы должны быть помещены в специальный контейнер, обеспечивающий консервацию отработанного топлива. Причём материал, из которого изготовлен контейнер, не должен вступать в какую — либо химическую реакцию с веществом.

Помещения для хранения должны быть оборудованы сухотарными бочками, которые позволяют короткоживущим РАО распасться перед проведением дальнейшей их переработки. Таким помещением является хранилище радиоактивных отходов. Цель его функционирование — осуществление временного размещения РАО для дальнейшей транспортировки к местам их захоронения.

Контейнер для твердых радиоактивных отходов

Захоронение радиоактивных отходов не может обойтись без специальной емкости, которая называется контейнер для РАО. Контейнер для радиоактивного мусора – сосуд, используемый как хранилище радиоактивных отходов. В России закон устанавливает огромное количество требований к подобному изобретению.

Основные из них:

  1. Невозвратный контейнер не предназначен для хранения жидких РАО. Его структура позволяет вмещать в себя только твердые или отвержденные вещества.
  2. Корпус, который имеет контейнер, должен быть герметичен и не пропускать даже малую часть хранящихся отходов.
  3. После снятия крышки и проведения дезактивации, загрязнение не должно превышать больше 5 частиц на м 2 . Допускать большего загрязнения нельзя, так как неприятные последствия могут коснуться и внешней среды.
  4. Контейнер должен выдерживать самые суровые температурные режимы от — 50 до + 70 градусов по Цельсию.
  5. При сливе радиоактивного вещества с высокой температурой в емкость, контейнер должен выдерживать температуру до + 130 градусов по Цельсию.
  6. Контейнер должен выдерживать внешние физические воздействия, в частности землетрясения.

Процесс хранения изотопов в России должен обеспечивать:

  • Их изоляцию, соблюдение охранительных мероприятий, а также наблюдение за состоянием окружающей среды. Последствия, при нарушении подобного правила, могут быть плачевными, так как вещества способны практически мгновенно загрязнить близлежащие районы.
  • Возможность облегчения дальнейших процедур на последующих этапах.

Основными направлениями процесса хранения токсических отходов являются:

  • Хранение РАО с коротким сроком жизни. В последующем осуществляют их сброс в строго регламентированных объемах.
  • Хранение высокоактивных РАО до момента их захоронения. Это позволяет уменьшить количество выделяемого ими тепла, и уменьшить последствия вредного воздействия на экологию.

Захоронение РАО

Проблемы захоронения радиоактивных отходов до сих пор существуют в России. Должно обеспечиваться не только экологическая защищенность человека, но и окружающей среды. Данный вид деятельности предполагает наличие лицензии на пользование недрами и право осуществления работ по освоению ядерной энергии. Пункты утилизации радиоактивных отходов могут пребывать как в федеральной собственности, так и принадлежать государственной корпорации «Росатом». На сегодняшний день захоронение РАО в РФ производят в специально отведенных местах, которые называются могильники для радиоактивных отходов.

Существует три вида захоронения, их классификация зависит от длительности хранения радиоактивных веществ:

  1. Длительное захоронение РАО — десяток лет. Вредные элементы хоронят в траншеях, небольших инженерных сооружениях, сделанных на земле или под ней.
  2. На сотни лет. В этом случае захоронение радиоактивных отходов осуществляют в геологических структурах материка, сюда входят поземные выработки и естественные полости. В России и других странах активно практикуют создание могильников на дне океана.
  3. Трансмутация. Теоретически возможный способ избавление от радиоактивных веществ, который подразумевает облучение долгоживущих радионуклидов и превращение их в короткоживущие.

Выбирается вид захоронения на основе трех параметров:

  • Удельная активность вещества
  • Уровень герметизации упаковки
  • Предполагаемый срок хранения

Хранилища радиоактивных отходов в России должны соответствовать требованиям:

  1. Хранилище радиоактивных отходов должно располагаться в удалении от города. Расстояние между ними должно быть не меньше 20 километров. Последствия при нарушении этого правила – отравление и возможная гибель населения.
  2. Рядом с территорией могильника не должно быть зон застройки, иначе есть риск повреждения контейнеров.
  3. При полигоне должен находиться участок, на котором будет выполняться захоронение отходов.
  4. Уровень грунтовых источников должен быть максимально удален. Если отходы попадут в воду, то последствия будут печальными – смерть животных и человека
  5. Радиоактивные могильники твердых и прочих отходов должны иметь санитарно — защитную зону. Её протяжённость не может быть меньше 1 километра от зон выпаса скота и населенных пунктов.
  6. При полигоне должен находиться завод, занимающийся детоксикацией РАО.

Переработка отходов

Переработка радиоактивных отходов – процедура, которая направлена на непосредственную трансформацию агрегатного состояния или свойств радиоактивного вещества, с целью создания удобства для перевозки и хранения отходов.

Для каждого типа мусора существуют собственные методы проведения подобной процедуры:

  • Для жидких – осаждения, обмен при помощи ионов и дистилляция.
  • Для твердых – сжигание, прессование и кальцинация. Остатки твердых отходов отправляют на места захоронения.
  • Для газообразных – химическое поглощение и фильтрация. Далее вещества будут храниться в баллонах с высоким давлением.

Какого бы агрегата не перерабатывался продукт, в итоге получится иммобилизованные компактные блоки твердых типов. Для иммобилизации и дальнейшего изолирования твердых веществ, применяют следующие методы:

  • Цементирование. Применяется для мусора, имеющего низкую и среднюю активность вещества. Как правило, это отходы твердых типов.
  • Обжигание при высоких температурах.
  • Остекловывание.
  • Упаковка в специальные емкости. Обычно такие контейнеры сделаны из стали или свинца.

Дезактивация

В связи с активным загрязнением окружающей среды, в России и других странах мира пытаются найти актуальный способ дезактивации радиоактивного мусора. Да, захоронение и утилизация твердых радиоактивных отходов дают свои результаты, но к сожалению, эти процедуры не обеспечивают безопасность экологии, а значит не являются совершенными. В настоящий момент в России практикуют несколько способов дезактивации РАО.

При помощи карбоната натрия

Такой способ применяется исключительно для твердых отходов, которые попали в почву: карбонат натрия выщелачивает радионуклиды, которые извлекаются из раствора щелочи частицами иона, включающими в свой состав магнитный материал. Далее хелатные комплексы удаляются при помощи магнита. Такой способ обработки твердых веществ достаточно эффективен, однако имеются недостатки.

Проблема метода:

  • Выщелачиватель (формула Na2Co3) имеет достаточно ограниченную химическую способность. Он попросту не в состоянии извлечь всю гамму радиоактивных соединений из твердого состояния и перевести их в тип жидких материалов.
  • Дороговизна способа в основном из — за хемосорбционного материала, который имеет уникальную структуру.

Растворение в азотной кислоте

Применим способ к радиоактивным пульпам и осадкам, эти вещества растворяют в азотной кислоте с примесью гидразина. После этого раствор упаковывают и проводят остеклование.

Главная проблема это дороговизна процедуры, так как упарка раствора и дальнейшая утилизация радиоактивных отходов стоит достаточно дорого.

Элюирование почвы

Применяется для дезактивации почвы и грунта. Такой способ наиболее щадящий по отношению к окружающей среды. Суть заключается в следующем, зараженную почву или грунт обрабатывают проводя элюирование водой, водными растворами с прибавками аммониевыми солями, растворами аммиака.

Главная проблема это относительно небольшая эффективность при извлечении радионуклидов, которые связаны с почвой на химическом уровне.

Дезактивация жидких отходов

Радиоактивные отходы жидких типов – особый вид мусора, который сложен в хранении и в утилизации. Именно поэтому дезактивация – лучшее средство избавления от подобного вещества.

Существует три способа очистки вредного материала от радионуклидов:

  1. Физический метод. Подразумевает процесс выпаривания или вымораживания веществ. Далее проводится герметизация и помещение вредных элементов в могильники мусора.
  2. Физико — химический. При помощи раствора с селективными экстрагентами проводится экстракция, т.е. вывод радионуклидов.
  3. Химический. Очистка радионуклидов при помощи разных природных реагентов. Главная проблема способа заключается в большом количестве оставшихся шламов, которые отправляются на могильники.

Общая проблема каждого метода:

  • Физические способы – крайне высокие затраты на выпаривание и вымораживание растворов.
  • Физико — химические и химические – огромные объемы радиоактивных шламов, отправленные на могильники. Процедура захоронение довольно дорогая, она требует много денег и времени.

Радиоактивные отходы – проблема не только России, но и других стран. Главная задача человечества на данный момент – утилизация радиоактивных отходов и их захоронение. Какими методами это делать, решает каждое государство самостоятельно.

Швейцария не занимается самостоятельной переработкой и захоронением радиоактивных отходов, но активно занимается разработкой программ по обращению с подобным мусором. Если же не предпринимать никаких действий, то последствия могут быть самыми печальными вплоть до гибели человечества и животных.

Радиоактивные отходы возникают в результате работы наземных ядерных установок и судовых реакторов. Если радиоактивные отходы сбрасывать в реки, моря океаны, как и другие отходы деятельности человека, то все может закончиться печально. Радиоактивное облучение, превышающее естественный уровень, вредно для всего живого на суше, так и в водоемах. Накапливаясь, радиация приводит к необратимым изменениям в живых организмах, даже уродствам в последующих поколениях.

Сегодня в мире действует порядка 400 атомных судов. Они сбрасывают радиоактивные отходы непосредственно в воды мирового океана. Основную же массу отходов в этой сфере даёт атомная промышленность. Существуют подсчеты, что если ядерная энергетика станет основным источником энергии в мире, количество отходов может достичь тысячи тонн в год… Многочисленные международные организации активно выступают за запрещение сброса радиоактивных отходов в природные воды планеты.

Но есть другие способы утилизации радиоактивных отходов, не связанные с нанесением существенного ущерба окружающей среде.

Во время печально известной аварии на ПО «Маяк» (Озерск, Челябинская область) в одной из емкостей хранилища радиохимического завода произошел химический взрыв жидких высокоактивных отходов. Основной причиной взрыва стало недостаточное охлаждение емкостей с отходами, которая подверглась сильному нагреву и взорвалась. По оценкам экспертов в сферу взрыва было вовлечено 20 Мки активности радионуклидов, находившихся в емкости, из них 18 Мки осело на территории объекта, а 2 Мки рассеялось на территории Челябинской и Свердловской областей. Образовался радиоактивный след, позже названный Восточно-Уральским радиоактивным следом. Территория, подвергшаяся радиоактивному загрязнению, представляла собой полосу шириной до 20 - 40 км и протяжзенностью до 300км. Территория, на которой потребовалось введение мер радиационной защиты и был присвоен статус радиоактивно загрязненной (при принятой максимальной плотности загрязнения 74 кБк / кв. м или 2Ки/кв. км по стронцию-90), составила достаточно узкую полосу шириной до 10 км и протяженностью около 105 км.

Плотность радиоактивного загрязнения территории непосредственно на промышленной площадке достигала от десятков до сотен тысяч Ки на кв. км по стронцию-90. По современной международной классификации та авария была отнесена к тяжелым и получила индекс 6 по 7-балльной системе.

Для справки:

ФГУП «Национальный оператор по обращению с радиоактивными отходами» (ФГУП «НО РАО») созданный приказом госкорпорации «Росатом» - единственная организация в России, уполномоченная в соответствии с федеральным законом #190-ФЗ «Об обращении с радиоактивными отходами» вести деятельность по финальной изоляции РАО и организации инфраструктуры для этих целей.

Миссия ФГУП «НО РАО» - обеспечение экологической безопасности Российской Федерации в области окончательной изоляции радиоактивных отходов. В частности, решение проблем накопленного советского ядерного наследия и вновь образующихся РАО. Предприятие является, по сути, государственным производственно-экологическим предприятием, ключевая цель которого - окончательная изоляция РАО с учетом любых потенциальных экологических рисков.

Первый в России пункт финальной изоляции радиоактивных отходов был создан в Новоуральске Свердловской области. В данный момент Национальный оператор получил лицензию на эксплуатацию 1-ой очереди и лицензии на сооружение 2-й и 3-й очередей объекта.

На сегодня ФГУП «НО РАО» ведет также работы по созданию пунктов финальной изоляции радиоактивных отходов 3 и 4 классов в Озерске Челябинской области, и Северске Томской области.