Меню

Правильные показания датчиков на автомобили. Автомобильные датчики, назначение и разновидности

Устройство автомобиля

Датчик температуры мотора

Датчик температуры охлаждающей воды — датчик температуры мотора (ДТМ), но смотрится в виде термистора, т. е. полупроводникового резистора, его сопротивление меняется зависимо от температуры. Датчик вворачивается в проточный патрубок охлаждающей системы мотора и повсевременно находится в потоке охлаждающей воды. Когда температура воды низкая датчик имеет высочайшее сопротивление (приблизительно 100 кОм при ~44 °С), а когда температура высочайшая напротив — низкое (11—34 Ом при 140 °С). ЭБУ мотора через сопротивление определенной величины подает к датчику стабилизированное напряжение в размере 5 В и с помощью делителя определяет падение напряжения на приборе. На прохладном движке оно будет высочайшим, а когда мотор прогрет — низким. По измеренному понижению напряжения на приборе, блок управления определяет температурный показатель охлаждающей воды. Данный показатель оказывает влияние на работу огромного количества систем, которыми управляет автоматика.

Например, по температуре мотора корректируется состав воздушно-топливной консистенции (ВТ-смеси): для прохладного мотора смесь должна быть более обогащенной, для прогретого более обедненной. По температуре мотора также корректируется угол опережения зажигания.

Нехорошее соединение (обрыв) в цепи датчика охлаждающей воды передастся в блок управления как низкая температура мотора. ВТ-смесь при всем этом очень обогатиться обогащается, и мотор начинает работать наименее экономно, загрязняет при всем этом окружающую среду. В памяти ЭБУ-Д (в регистраторе дефектов) будет записан код, в расшифровке имеющий вид «Работа мотора на более богатой ВТ-смеси».

Неисправность датчика температуры воды либо замыкание в цепи интерпретируется в ЭБУ мотора как перегрев. Система впрыска горючего будет сформировывать ВТ-смесь, которая переобеднена, и работа мотора станет неуравновешенной. В памяти регистратора блока управления запишется код неисправности «Работа мотора на бедной ВТ-смеси».

Схожий датчик охлаждающей воды нужно инспектировать в таких случаях, как:

  • негаснущая контрольная лампа «перегрев мотора» (если имеется);
  • обнаружение в регистраторе неисправности соответственных кодов;
  • завышенный расход горючего, детонация либо завышенная концентрации в выхлопных газах СО;
  • затрудненный запуск, неуравновешенная работа либо остановка мотора на холостом ходу.

Также при тестировании устройств существует необходимость в внедрение технической документации для раздельно взятого авто либо встроенное в ПО исследовательских устройств пути дефектов, дающие полную картину прошедшей проверки.

Устранения дефектов и внедрение S.A.I.S. AUTODATA в поиске.

Перед тем как инспектировать датчик температуры охлаждающей воды стоит убедиться в корректности работы системы остывания мотора.

Охлаждающая система должна быть корректно заправлена жидкостью «остывания». Резервуар расширителя и радиатор должны быть по норме заполнены. Крышку радиатора стоит снимать лишь на остывшем моторе, по другому охладитель, у которого температура работы более 100 С может причинить вам ожоги. Для обычного функционирования датчика управления его механическая часть должна повсевременно находиться в охлаждающей воды.

Крышка радиатора должна герметично запираться, по другому в системе могут быть образованы воздушные «кармашки» и показания прибора будут искажены.

Состав охладителя должен по всем показателям соответствовать советам производителя. Часто употребляется смесь 50% антифриза и 50% воды. По теплопроводимости такая смесь считается хорошей.

Вентилятор должен верно работать, чтоб мотор не перегревался. Если в охлаждающей системе находится электроконтактный термовыключатель либо термостат, то нужно убедиться в их полной возможности к работе.

Диагностика датчиков температуры воды с помощью сканера Bosch KTS.

Компания BOSCH (Германия)- мировой фаворит на рынке исследовательских датчиков для автомобилей. Применение ведущих технологий, сотрудничество с авто концернами, большой опыт работы, позволило фирме BOSCH сделать для себя бренд изготовителя высококачественного и надежного оборудования. Следствием выполненной работы, является системная диагностика ESI и KTS.

Все механизмы состоят из набора нужных для работы кабелей и аппаратной части мультиплекора. Неизменное развитие ESI позволяет обновлять перечень диагностируемых блоков управления машиной, что дает возможность с уверенностью браться за работу практически с хоть какой машиной. Итак, на сей день большой охват: 65 марок автомобилей, 1350 типов автомобилей, 145 авто систем, около 17000 блоков управления.

Все это оборудование полностью комфортно, позволяет стремительно освоить все способности и имеет понятное управление. Нет никаких колебаний в том, что этот продукт является самой универсальной и высококачественной системной исследовательских датчиков.

Протоколы поддерживаемые Bosch KTS540:

  • ISO 15765-4 (OBD)
  • CAN ISO 11898
  • ISO 9141-2 (K/L lines)
  • SAE-J1850 SPC
  • SAE-J1850 DLC
  • Blink-code
  • Low Speed CAN, Middle Speed-, High Speed-, CAN Single Wire

Способности:

  • Базовые опции
  • Сброс сервисных интервалов
  • Управление исполнительными механизмами
  • Вывод текущих данных в графическом либо цифровом виде
  • Идентификация блоков (№ софта, заглавие компаний производителя, …)
  • Удаление/чтение кодов ошибок и их расшифровка

Сканер прекрасно подойдет для диагностики опций всех устройств, включая датчик температуры охлаждающей воды. Интерфейс этой программки очень прост и дает необъятную информативность для устранения и поиска неисправности системы управления мотором. На экран монитора ноутбука либо компьютера в составе KTS Bosch, который подключен к диагностическому бортовому разъему, выводятся значения датчика температуры в текущий период.

Датчик положения заслонки дросселя

Датчик положения заслонки дросселя устанавливается на дроссельном патрубке с боковой стороны и связан с дроссельной заслонкой (поточнее ее осью). Датчик смотрится в виде трех-выводного потенциометра, на один его вывод подается плюс стабилизированного напряжения 6 В, а другой вывод предполагает за собой массу. С третьего вывода от ползунка (потенциометра) снимается сигнал для блока управления. Когда при воздействии, на педаль управления заслонка дросселя поворачивается, на выходе датчика напряжение меняется. Когда заслонка закрыта оно ниже 1 В. Когда заслонка перебегает в открытое положение, напряжение на выходе датчика увеличивается и при стопроцентно открытой заслонке должно быть более чем 5 В. Отслеживая напряжение датчика на выходе, ЭБУ корректирует количество горючего впрыснутого форсунками зависимо от градуса угла открытия заслонки дросселя. Так в системах питания горючего с электронноуправляемым впрыском производится акселерация. В подавляющем большинстве случаев датчик положения заслонки дросселя не просит никакого регулирования, потому что ЭБУ принимает холостой ход, как исходную отметку. Но датчики положения заслонки дросселя отдельных производителей все-же нуждаются в некой настройке, которая в таком случае производится по методике и спецификации производителя. Эта процедура проверки не очень подходит для диагностики заслонки дросселя с электрическим управлением.

Датчик концентрации кислорода

В современных машинных моторах, которые снабжены каталитическим нейтрализатором и системой впрыска горючего, нужно точно смотреть за составом топливовоздушной консистенции и поддерживать коэффициенты переобогащения воздуха на допустимом уровне (Лямбда равна 1), чем обеспечиваются уменьшение содержания ядовитых веществ и экономия горючего. Для этого используются ДКК (датчики управления концентрацией кислорода), которые инсталлируются системе отвода выхлопных газов и вырабатывают сигнал, который находится в зависимости от концентрации кислорода в выхлопном газе. Когда меняется концентрация кислорода в выхлопных газах датчики концентрации кислорода сформировывает выходное напряжение, изменяемое примерно на 0,1В (содержание кислорода высочайшее— смесь бедная), до 0,9 В (низкое содержании кислорода — смесь богатая). Для правильной работы датчик обязан иметь температуру выше, чем 300 °С. Потому после пуска мотора для резвого прогрева датчика управления, в него встроен нагревательный прибор. Сигнал от ДКК употребляется в блоке управления мотором для правки продолжительности открытого состояния форсунок и контроля стехиометрического состава консистенции.

Часто употребляются титановые и циркониевые датчики концентрации кислорода, их работа основывается на том факте, что у их остается неизменным выходное напряжение (равно оно 0,45 В при а примерно равном ~1), но может обменяться скачком от 0,1 В до 0,9 В если поменялся коэффициент (в спектре Лямбда= 0,99…1,1) излишка воздуха.

Есть несколько вариантов датчиков концентрации кислорода.

  1. Датчик с заземляемым корпусом и одним возможным выводом. От потенциального вывода сигнал поступит в блок управления. В качестве второго провода употребляют «массу» автомашины.
  2. Датчик с парой возможных выводов. Тут измерительная цепь не связана с «массой» авто, а работает только 2-ой провод.
  3. Датчик с установленными 3-мя выводами, на одном из их — измерительный сигнал, два оставшиеся — питание электронагревателя. В качестве «земли» выступает «масса» авто.
  4. Датчик, у которого четыре вывода. Тут, и датчик, и нагреватель изолированы от «массы».

Диагностирование датчика концентрации кислорода с помощью сканера Bosch

Процедура диагностирования заключается в последующем.

  1. Подключить сканер к разъему диагностики машины,
  2. Отлично прогреть датчик концентрации кислорода и движок в режиме холостого хода, позже поднять обороты до 3000 об/мин.
  3. Убедиться, что системы управления мотором работают в замкнутом режиме, потом:
  4. Устанавливаем на сканере режим осциллографа характеристик датчика концентрации кислорода
  5. Анализируем характеристики работы всех датчиков

При исправности датчика ДКК и системы подачи горючего амплитуда сигнала должна плавненько колебаться с частотой 4—19 Гц при неизменной скорости вращения коленчатого вала мотора. Нижний уровень должен быть в спектре 0,15—0,4 В, верхний — меж 0,5—0,8 В.

Неисправности, которые приводящие к неправильным свидетельствам датчика кислорода при диагностике датчиков управления движком автомобиля.

Стоит напомнить, что датчик кислорода реагирует на давление кислорода в отработанном газе, а не на наличие горючего, потому в ряде случаях датчик кислорода может неверно индицировать или богатую, или бедную смесь.

При пропуске зажигания (например, закокосована либо неисправна свеча) кислород не вступивший в реакцию горения поступит в выпускной коллектор, в нем датчик кислорода может неверно зарегистрировать обеднение воздушно-топливной консистенции.

Если выпускной коллектор будет не герметичный, то датчик кислорода будет снимать характеристики с кислород воздуха, который поступил снаружи.

В любом случае ЭБУ мотора реагирует на неверное обеднение воздушно-топливной консистенции как на правдивое и автоматом увеличивает в цилиндры подачу горючего. Это может привести к забрызгиванию свеч, к значительному перерасходу горючего и к пропускам воспламенения.

Датчик кислорода может выдать не правдивый сигнал об обогащении топливной консистенции, если датчик «отравлен». Отравление может наступить при возникновении вредных веществ в коллекторе, что вызовет постепенный выход его из строя прибора либо изменение его статических черт. В большинстве случаев отравляют датчика свинец (РЬ) либо кремний (Si). Неверное обогащение может быть и при поломанном перепускном клапане в системе рециркуляции отработанных газов, со стороны высоковольтного близлежащего провода системы зажигания от электронных наводок, также, если датчика кислорода плохо заземлен.

Современный автомобиль состоит из множества механических, электромеханических и электронных компонентов. Оптимальная работа двигателя должна обеспечиваться независимо от внешних условий. При изменении внешних факторов, работа узлов и компонентов должна адаптироваться под них. Датчики автомобиля служат своеобразным следящим устройством за работой автомобиля. Рассмотрим основные датчики:

3. Датчик расхода воздуха в авто — на что влияет?

Принцип работы датчика расхода воздуха основан на измерении количества тепла, отданного потоку воздуха во впускном коллекторе двигателя. Нагревательный
элемент датчика установлен перед воздушным фильтром автомобиля. Изменение
скорости потока воздуха и, соответственно, его массовой доли, отражается на степени
изменения температуры нагревательной спирали MAF-сенсора.

«Троение» двигателя при работе и потеря мощности говорит о возможном выходе из строя датчика расхода воздуха.

4. Кислородный датчик, лямда-зонд — неисправность датчика

Кислородный датчик или лямда-зонд определяет количество кислорода в выпускном коллекторе, оставшегося после сгорания топлива. Лямда-зонд входит в электронную систему управления двигателем, которая регулирует количество топлива, обеспечивая его полноту сгорания. Повышенный расход топлива характеризует возможную неисправность датчика.

5. Датчик дроссельной заслонки — признаки неисправности

Этот датчик представляет собой электромеханическое устройство, состоящего из чувствительного элемента и шагового двигателя.

Чувствительным элементом является
температурный датчик, а шаговый двигатель является исполнительным механизмом.
Это электромеханическое устройство изменяет положение дроссельной заслонки
относительно температуры охлаждающей жидкости. Таким образом, частота вращения
коленчатого вала двигателя зависит от степени нагрева ОЖ.

Характерным признаком неисправности этого датчика является отсутствие прогревочных оборотов и повышенный расход топлива.

6. Датчик давления масла — функции, выход из строя

На автомобилях японской марки устанавливается датчик давления масла мембранного
типа. Датчик состоит из двух полостей, разделенных гибкой мембраной. Масло
воздействует на мембрану с одной стороны, прогибаясь от давления. В измерительной
полости датчика мембрана соединена со штоком реостата.

В зависимости от давления моторного масла, мембрана прогибается больше или меньше, изменяя при этом общее сопротивление сенсора. Датчик давления масла расположен на блоке цилиндров двигателя.

Горящая лампочка давления масла на панели автомобиля может свидетельствовать о выходе из строя датчика.

7. Не работает датчик детонации в двигателе?

Датчик детонации двигателя измеряет угол опережения зажигания. При нормальной работе двигателя датчик находится в «холостом» режиме. При изменении процесса
сгорания в сторону взрывного характера сгорания топлива-детонации, датчик посылает сигнал электронной системе управления двигателем для изменения угла опережения
зажигания в сторону уменьшения.

Он расположен в районе воздушного фильтра на блоке цилиндров. Для проверки работоспособности датчика детонации, необходимо выполнить .

8. Датчик угла поворота распредвала — троит двигатель


Этот датчик находится на головке блока цилиндров и измеряет частоту вращения
распределительного вала двигателя, и на основе сигналов от датчика, блок управления определяет текущее положение поршней в цилиндрах.

Неравномерность работы двигателя и троение свидетельствует о некорректной работе датчика. Проверку производят при помощи омметра, измеряя сопротивление между клеммами сенсора.

9. Датчик АБС / ABS в автомобиле — проверяем работоспособность


Датчики АБС электромагнитного типа устанавливаются на колесах автомобиля и входят в антиблокировочную систему автомобиля.

Функцией датчика является измерение частоты вращения колеса. Объектом измерения датчика является сигнальный зубчатый диск, который установлен на ступице колеса. При неисправном датчике АБС, контрольная лампочка на панели управления не гаснет после запуска двигателя.

Технология определения работоспособности датчика заключается в измерении сопротивления между контактами датчика, при неисправности сопротивление равняется нулю.

10. Датчик уровня топлива в авто — как проверить работоспособность?

Датчик уровня топлива устанавливается в корпус бензонасоса и состоит из нескольких компонентов. Поплавок посредством длинной штанги воздействует на секторный реостат, который изменяет сопротивление датчика в зависимости от уровня топлива в баке автомобиля. Сигналы датчика поступают на стрелочный или электронный указатель на панели управления автомобиля. Проверка работоспособности датчика уровня топлива осуществляется омметром, которым измеряется сопротивление между контактами датчика.

Современный инжекторный двигатель управляется множеством датчиков. Но электронная система управления мотором не всегда может быть причиной его поломки. Поэтому, прежде чем проверять исправность датчиков, убедитесь в работоспособности остальных частей и деталей силового агрегата. Единственным фактом, указывающим непосредственно на неисправность какого-либо датчика, является загоревшаяся на панели приборов лампа Check Engine.
Вам понадобится

Инструмент для демонтажа мешающих деталей;
- омметр (мультиметр).
Инструкция
1
Датчик положения дроссельной заслонки (ДПДЗ) представляет собой переменный резистор. Чтобы проверить его, измерьте сопротивление между его выводами. Полученные показания сравните с заводскими значениями, указанными в инструкции по эксплуатации (на разных машинах разные датчики). Несоответствие в 20% считайте нормальным. Также на неисправность ДПДЗ может указывать нестабильность холостого хода, скачки во время увеличения оборотов.
2
Датчик детонации без специализированного оборудования проверить невозможно. Косвенный признак его поломки – повышенная детонация при работе двигателя. За диагностикой и заменой датчика обращайтесь к специалистам. То же самое относится и к датчику фаз ГРМ. Он устанавливается только на двигатели с четырьмя клапанами на цилиндр. Его проверка осуществляется с помощью специальных диагностических приборов.
3
Если двигатель отказывается заводиться, это признак неисправности датчика положения коленвала. Этот датчик единственный, при поломке которого мотор отказывается запускаться. Чтобы провести его дополнительную проверку, измерьте сопротивление между выводами, заранее отключив разъем. В норме этот показатель должен равняться 550-750 Ом.
4
Также причиной неисправности датчика положения коленвала может стать контроллер, установленный на задающем диске шкива коленвала. Резиновый демпфер, установленный на зубчатом колесе контроллера может провернуться относительно шкива. Чтобы проверить это, найдите метки на распредвале и на маховике. Кстати, метка на маховике дублирует метку на коленвале. Если ролик стоит правильно, указанные метки совпадают, а между двумя отсутствующими зубами между задающим диском и осью датчика коленвала умещается 19-20 зубов задающего диска.
5
Для проверки датчика массового расхода воздуха отсоедините колодку проводов, подходящих к нему. Затем измерьте сопротивление между выводом, указанным в схеме электронной системы управления двигателем, и массой. Как правило, оно должно равняться 4-6 кОм. Либо снимите датчик с заведенного мотора. При этом двигатель не станет опускать обороты меньше 1500. Также признаком неисправности датчика расхода воздуха является неустойчивая работа силового агрегата, затрудненный его пуск, задержки, скачки, провалы при движении, недостаточная мощность и тяга автомобиля.
6
Чтобы проверить исправность датчика скорости, перейдите на нейтральную передачу во время движения автомобиля на холостом ходу. При исправном датчике обороты немного увеличатся. На автомобилях ВАЗ-2110/2111/2112 при неисправном датчике скорости перестает работать спидометр.
7
Для проверки датчика температуры охлаждающей жидкости найдите в документации по ремонту специальную таблицу. Изменение температуры в системе охлаждения должно сопровождаться изменением сопротивления этого датчика согласно данным в таблице.
8
Кислородный датчик проверьте измерением сопротивления нагревателя, предварительно отключив от него разъем. Полученный результат должен быть от 0,5 до 10 Ом в зависимости от модели датчика. Точные данные ищите в инструкции по ремонту. Также для его проверки снимите разъем с датчика, включите зажигание и измерьте опорное напряжение контроллера датчика положения коленвала, которое должно равняться 0,45 В.

Ежегодно число датчиков в автомобиле увеличивается. Электронные устройства отличаются по своим техническим параметрам, назначению и особенностям применения. Датчики можно классифицировать по функциональности и условиям эксплуатации.
  1. Датчики первого типа отвечают за диагностику и работоспособность тормозов и системы рулевого управления.
  2. Приборы второго класса контролируют состояние силового агрегата, трансмиссии, подвески и шин.
  3. Третья категория датчиков должна обеспечивать защитные функции транспортного средства и комфортабельность езды.
Современное развитие электроники позволяет изготавливать датчики из долговечных высокотехнологичных материалов. Поэтому по сравнению с первыми приборами, новые электронные устройства работают качественнее и дольше. Инновационные технологии позволили уменьшить и габаритные размеры датчиков, что важно для автомобилей с большим числом дополнительных агрегатов и узлов. Конструктивно можно разделить все автомобильные электронные приборы на две группы.
  1. Интегральные датчики с интеллектуальными возможностями снижают нагрузку на блок управления. Приборы соединяются гибкими линиями связи, одновременно можно использовать несколько электронных приборов в связке. Такие датчики способны обрабатывать даже сигналы с малой интенсивностью.
  2. Электронные приборы волоконно-оптического типа отличаются высокой чувствительностью к загрязнениям и повышенному давлению. Из-за этого они недолговечны, слабо воспринимают электромагнитные помехи. Такие сенсоры подходят не для всех типов автомобилей, потому что для присоединения их требуются специальные ответвители и разъемы.

Датчики двигателя

Чтобы оптимизировать работу силового агрегата, а также следить за исправностью узлов и механизмов, на двигатели автомобилей устанавливаются следующие датчики.
  • Воздушный датчик предназначен для слежения за количеством поступающего во впускной тракт воздуха. Расходомер является надежным прибором, а главным его врагом считается влага. При выходе из строя прибора двигатель неустойчиво работает, появляется эффект "троения", наблюдается повышенный расход топлива. Расходомер встраивается во впускной тракт сразу за воздушным фильтром.
  • "Лямбда-зонд" контролирует массовую долю кислорода, выходящего из выпускного коллектора. Прибор дозирует подачу топлива, отталкиваясь от концентрации кислорода. Располагается "лямбда-зонд" в системе выпуска отработанных газов.
  • В системе регенерации отработанных газов современных автомобилей устанавливаются электронные приборы, контролирующие концентрацию оксида азота. Они размещаются в дроссельном узле. Как только устройство будет загрязнено, увеличится число повторений циклов регенерации.
  • Датчик клапана EGR предназначен для снижения концентрации вредных газов, выбрасываемых в атмосферу. При резком ускорении авто прибор приоткрывает клапан, и выхлопные газы направляются в камеры сгорания. Таким образом, происходит полное сгорание углеводородов.
  • В бензиновых моторах находит применение датчик Холла. Прибор устанавливается в задней крышке распредвала и измеряет его угол положения. Полученные сигналы от датчика Холла изменяют скорость перемещения поршней в цилиндрах.
  • Датчик дроссельной заслонки снимает показания с педали акселератора. Прибор корректирует работу дроссельной заслонки, исходя из температуры охлаждающей жидкости. Чем холоднее антифриз, тем медленнее вращается коленвал. Датчик монтируется на дроссельном патрубке и взаимосвязан с заслонкой.
  • Датчик положения коленвала отвечает на своевременную подачу топлива, связывая дозировку с моментом впрыска или опережением зажигания. Прибор снимает показания с зубчатого шкива, поэтому он крепится внизу блока цилиндров. Как только датчик выйдет из строя, мотор невозможно завести.

Датчики давления



Принцип работы датчиков давления примерно одинаков. А вот устанавливаются они в самых разных узлах и механизмах автомобиля. Различают приборы первостепенного и второстепенного значения.

Датчики первостепенного значения

К приборам первостепенного значения, измеряющим давление, необходимо отнести:
  • датчик давления во впускном тракте, который обеспечивает взаимосвязь между частотой вращения коленвала (уровнем нагрузки) и потоком топливной смеси;
  • датчик давления воздуха в шинах контролирует заданный диапазон с целью безопасного движения автомобилей. Он встраивается внутри колеса.

Датчики второстепенного значения



датчик давления масла В зависимости от комплектации автомобиля число второстепенных датчиков может существенно отличаться.
  • Датчик давления масла присутствует в автомобилях японских производителей. Прибор мембранного типа определяет показатель давления за счет прогиба мембраны. Датчик встраивается в блок цилиндров.
  • Датчик давления топлива устанавливается в бензонасосе. При низком показателе прибор дает команду подкачивающему насосу.
  • В модуле антиблокировочной системы имеется датчик давления тормозной жидкости.
  • Под сиденьями некоторых авто есть сенсоры, которые определяют вес пассажира.

Температурные датчики



Специальные устройства для измерения температуры технических жидкостей и газообразных соединений в автомобиле встречаются во многих системах.
  1. Чтобы контролировать температуру охлаждающей жидкости, в термостате или головке блока цилиндров устанавливается специальный датчик. Он определяет температурный режим двигателя, а при выходе за верхний предел дает команду на включение вентилятора. Если контрольная лампочка охлаждающей жидкости загорается на панели приборов, то это указывает на появление неполадок в системе.
  2. Для бесперебойной работы мотора важно контролировать температуру масла. Датчик монтируется в корпусе масляного фильтра.
  3. Находясь в салоне автомобиля, водителю полезно знать и о температуре атмосферного воздуха. Датчик температуры окружающей среды устанавливается спереди автомобиля.
  4. Многие автомобили, укомплектованные системами климатического контроля, оснащаются датчиками температуры воздуха в салоне. Приборы монтируются в торпеде.

Датчики в топливной системе



Чтобы качество и количество топлива соответствовало нагрузке на двигатель, в топливной системе используется ряд датчиков.
  • Прибор, контролирующий уровень топлива, монтируется в баке. Он оснащен поплавком с длинной штангой и сенсорным реостатом. Показатель уровня топлива напрямую зависит от величины сопротивления сенсора.
  • В топливной системе находится и датчик расхода топлива. Он преобразует количество прошедшего топлива в электрические импульсы. Отличительными чертами прибора являются точность и надежность.
  • Электронное устройство альтиметр встраивается в блок управления двигателем. Он регулирует подачу в камеры сгорания отработанных газов в зависимости от атмосферного давления.
  • Правильную организацию работы газораспределительного механизма обеспечивает измеритель фаз. Он устанавливается недалеко от воздушного фильтра. При износе датчика происходит избыточное обогащение топливной смеси.
  • Датчик детонации предназначен для измерения угла опережения зажигания. Устанавливается измеритель между цилиндрами двигателя. При выходе из строя наблюдается повышение детонации из-за увеличения числа взрывных процессов.
Инновационные технологии позволяют создавать для комфортной эксплуатации автомобиля. Например, датчик дождя управляет работой дворников. Прибор монтируется в области лобового стекла, при попадании капель воды сигнал подается в электронную систему, которая включает щетки. Водителю не нужно отвлекаться от езды на включение и выключение стеклоочистителей.

При всей привлекательности автомобильных технологий середины ХХ века отказ от них закономерен. Обязательными для России стали, наконец, требования Евро II, за ними неизбежно последуют Евро III, потом Евро IV. В сущности, каждому сознательному автомобилисту предстоит радикально изменить собственное мировоззрение, сделав его основой не «гоночные» амбиции, культивировавшиеся целое столетие, а бережное отношение к цивилизации. Количество и состав выбросов автомобильного двигателя теперь ограничивают чрезвычайно жесткими рамками - хотя бы и при некоторой потере динамических показателей.

Добиться выполнения таких требований сумеем, только подняв уровень сервиса. Конечно, автолюбителям, не утратившим любознательности, «лишние» знания тоже не повредят. Хотя бы в прикладном смысле: грамотный человек меньше рискует быть обманутым недобросовестными мастерами, а это всегда актуально.

Итак, к делу. Сегодня автомобили ВАЗ выпускаются с контроллером Bosch M7.9.7. В сочетании с дополнительным датчиком кислорода в выхлопных газах и датчиком неровной дороги это обеспечивает выполнение норм Евро III и Евро IV. Конечно, теперь увеличилось количество контролируемых параметров. Вот о них и расскажем, предполагая, что мы, вы или диагност из сервиса вооружены сканером - например, ДСТ-10 (ДСТ-2).

Начнем с датчиков температуры: их два. Первый - на отводящем патрубке системы охлаждения (фото 1). По его показаниям контроллер оценивает температуру жидкости перед пуском двигателя - TMST (°С), ее значения при прогреве - ТМОТ (°С). Второй датчик измеряет температуру воздуха, поступающего в цилиндры, - TANS (°С). Он установлен в корпусе датчика массового расхода воздуха. (Здесь и далее выделенные сокращения те же, что в официальных руководствах по ремонту.)

Надо ли долго объяснять роль этих датчиков? Представьте, что контроллер обманут заниженными показаниями ТМОТ, а двигатель на самом деле уже прогрет. Начнутся проблемы! Контроллер будет увеличивать время открытия форсунок, пытаясь обогатить смесь - результат тут же обнаружит датчик кислорода и «настучит» контроллеру об ошибке. Контроллер попытается ее исправить, но тут снова вмешивается неверная температура…

Величина TMST перед запуском, помимо прочего, важна для оценки работы термостата по времени прогрева двигателя. К слову сказать, если автомобилем долго не пользовались, то есть температура двигателя сравнялась с температурой воздуха (с учетом условий хранения!), очень полезно сопоставить показания обоих датчиков перед пуском. Они должны быть одинаковы (допуск ±2°С).

А что будет, если отключить оба датчика? После пуска величину ТМОТ контроллер рассчитывает согласно алгоритму, заложенному в программу. А величину TANS принимает равной 33°С для 8-клапанного двигателя 1,6 л и 20°С для 16-клапанного. Очевидно, что исправность этого датчика очень важна при холодном пуске, особенно в мороз.

Следующий важный параметр - напряжение в бортовой сети UB. В зависимости от типа генератора оно может лежать в пределах 13,0- 15,8 В. Контроллер получает питание +12 В тремя путями: от АКБ, замка зажигания и главного реле. С последнего он вычисляет напряжение в системе управления и при необходимости (в случае понижения напряжения в сети) увеличивает время накопления энергии в катушках зажигания и длительность импульсов впрыска топлива.

Значение текущей скорости автомобиля выводится на дисплей сканера в виде VFZG. Оценивает ее датчик скорости (на коробке передач - фото 2) по частоте вращения корпуса дифференциала (погрешность не более ±2%) и сообщает контроллеру. Конечно, эта скорость должна практически совпасть с той, что показывает спидометр - ведь тросовый его привод остался в прошлом.

Если минимальные обороты холостого хода у прогретого двигателя выше нормы, проверим степень открытия дроссельной заслонки WDKBA, выраженную в процентах. В закрытом положении (фото 3) - ноль, у полностью открытой - от 70 до 86%. Нужно иметь в виду, что это относительная величина, связанная с датчиком положения заслонки, а не угол в градусах! (На устаревших моделях полному открытию дросселя соответствовали 100%.) На практике, если показатель WDKBA не ниже 70%, регулировать механику привода, что-то отгибать и т.п. нет необходимости.

При закрытом дросселе контроллер запоминает величину напряжения, поступающего с ДПДЗ (0,3–0,7 В), и хранит в энергозависимой памяти. Это полезно знать, если вы самостоятельно меняете датчик. В этом случае надо снять клемму с АКБ. (В сервисе для инициализации пользуются диагностическим прибором.) В противном случае измененный сигнал с нового ДПДЗ может обмануть контроллер - и обороты холостого хода не будут соответствовать норме.

Вообще же частоту вращения коленвала контроллер определяет с некоторой дискретностью. До 2500 об/мин точность измерений - 10 об/мин - NMOTLL, а весь диапазон - от минимума до срабатывания ограничителя - оценивает параметр NMOT с дискретностью 40 об/мин. Для оценки состояния двигателя более высокая точность в этом диапазоне не требуется.

Практически все параметры двигателя так или иначе связаны с расходом воздуха в его цилиндрах, контролируемым с помощью датчика массового расхода воздуха (ДМРВ - фото 4). Этот показатель, выраженный в килограммах в час (кг/ч), обозначается как ML. Пример: новый необкатанный 8-клапанный двигатель 1,6 л в прогретом состоянии на режиме холостого хода расходует 9,5- 13 кг воздуха в час. По мере приработки с уменьшением потерь на трение этот показатель существенно снижается - на 1,3- 2 кг/ч. Пропорционально меньше и расход бензина. Конечно, сопротивление вращению водяного и масляного насосов и генератора тоже сказывается, при эксплуатации несколько влияя на расход воздуха. В то же время контроллер рассчитывает и теоретическую величину расхода воздуха MSNLLSS для конкретных условий - частота вращения коленвала, температура охлаждающей жидкости. Это тот поток воздуха, который должен поступать в цилиндры через канал холостого хода. В исправном двигателе ML немного больше, чем MSNLLSS, - на величину перетечек через зазоры дросселя. А у неисправного двигателя, разумеется, возможны ситуации, когда расчетный расход воздуха больше фактического.

Углом опережения зажигания, его корректировками тоже заведует контроллер. Все характеристики хранятся в его памяти. Для каждых условий работы двигателя контроллер подбирает оптимальный УОЗ, который можно проверить - ZWOUT (в градусах). Обнаружив детонацию, контроллер уменьшит УОЗ - величина такого «отскока» выводится на дисплей сканера в виде параметра WKR_X (в градусах).

…Для чего системе впрыска, в первую очередь контроллеру, знать такие подробности? Надеемся ответить на этот вопрос в следующей беседе - после того как рассмотрим и другие особенности работы современного впрыскового мотора.