Меню

Курсовая работа: Качественное исследование модели хищник-жертва. Колебания системы хищник-жертва (модель Лотки-Вольтера) Математический анализ моделей типа хищник жертва

Устройство автомобиля

Математическое моделирование биологических процессов началось с создания первых простейших моделей экологической системы.

Допустим, в некотором замкнутом районе живут рыси и зайцы. Рыси питаются только зайцами, а зайцы – растительной пищей, имеющейся в неограниченном количестве. Необходимо найти макроскопические характеристики, описывающие популяции. Такими характеристиками являются число особей в популяциях.

Простейшая модель взаимоотношений популяций хищника и жертвы, основанная на логистическом уравнении роста, названа (как и модель межвидовой конкуренции) по имени ее создателей - Лотки и Вольтерра. Эта модель крайне упрощает исследуемую ситуацию, но все же полезна в качестве отправной точки в анализе системы хищник-жертва.

Предположим, что (1) популяция жертвы существует в идеальной (независимой от плотности) среде, где ее рост может ограничивать только наличие хищника, (2) столь же идеальна среда, в которой существует хищник, рост популяции которого ограничивает лишь обилие жертв, (3) обе популяции размножаются непрерывно согласно экспоненциальному уравнению роста, (4) скорость поедания жертв хищниками пропорциональ­на частоте встреч между ними, которая, в свою очередь, является функцией плотности популяций. Эти допущения и лежат в основе модели Лотки - Вольтерра.

Пусть в отсутствие хищников популяция жертвы растет экспоненциаль­но:

dN/dt =r 1 N 1

где N -численность, а r, - удельная мгновенная скорость роста популя­ции жертвы. Если же хищники присутствуют, то они уничтожают особей жертвы со скоростью, которая определяется, во-первых, частотой встреч хищников и жертв, возрастающей по мере увеличения их численностей, и, во-вторых, эффективностью, с которой хищник обнаруживает и ловит свою жертву при встрече. Число жертв, встреченных и съеденных одним хищником N с, пропорционально эффективности охоты, которую мы выразим через коэффициент С 1; численности (плотности) жертвы N и времени, затраченному на поиски Т:

N C =C 1 NT (1)

Из этого выражения легко определить удельную скорость потребления жертв хищником (т.е. число жертв, поедаемых одной особью хищника в единицу времени), которую часто называют также функциональным ответом хищника на плотность популяции жертвы:



В рассматриваемой модели С 1 является константой. Это означает, что число жертв, изъятых хищниками из популяции, линейно возрастает с увеличением ее плотности (так называемый функциональный ответ типа 1). Ясно, что общая скорость поедания жертв всеми особями хищника составит:

(3)

где Р - численность популяции хищника. Теперь мы можем записать уравнение роста популяции жертвы следующим образом:

При отсутствии жертвы особи хищника голодают и гибнут. Предполо­жим также, что в этом случае численность популяции хищника будет уменьшаться экспоненциально согласно уравнению:

(5)

где r 2 - удельная мгновенная смертность в популяции хищника.

Если жертвы присутствуют, то те особи хищника, которые смогут их найти и съесть, будут размножаться. Рождаемость в популяции хищника в данной модели зависит только от двух обстоятельств: скорости потребления жертв хищником и эффективности, с которой поглощенная пища перерабатывается хищником в его потомство. Если мы выразим эту эффективность через коэффициент s, то рождаемость составит:

Поскольку С 1 и s - константы, их произведение - это также константа, которую мы обозначим как С 2 . Тогда скорость роста популяции хищника будет определяться балансом рождаемости и смертности в соответствии с уравнением:

(6)

Уравнения 4 и 6 вместе образуют модель Лотки-Вольтерра.

Свойства этой модели мы можем исследовать точно так же, как и в случае конкуренции, т.е. построив фазовую диаграмму, на которой численность жертвы отложена по оси ординат, а хищника - по оси абсцисс, и проведя на ней изоклины-линии, соответствующие постоян­ной численности популяций. С помощью таких изоклин определяют поведение взаимодействующих популяций хищника и жертвы.

Для популяции жертвы: при откуда

Таким образом, поскольку r, и С 1 , - константы, изоклиной для жертвы будет линия, на которой численность хищника (Р) является постоянной, т.е. параллельная оси абсцисс и пересекающая ось ординат в точке Р =r 1 / С 1 . Выше этой линии численность жертвы будет уменьшаться, а ниже- возрастать.

Для популяции хищника:

при откуда

Поскольку r 2 и С 2 - константы, изоклиной для хищника будет линия, на которой численность жертвы (N) является постоянной, т.е. перпендикуляр­ная оси ординат и пересекающая ось абсцисс в точке N = r 2 /С 2 . Слева от нее численность хищника будет уменьшаться, а справа - возрастать.

Если мы рассмотрим эти две изоклины вместе, то легко заметим, что взаимодействие популяций хищника и жертвы имеет циклический характер, поскольку их численности претерпевают неограниченные сопряженные колебания. Когда велико число жертв, численность хищников растет, что приводит к увеличению пресса хищничества на популяцию жертвы и тем самым к снижению ее численности. Это снижение, в свою очередь, ведет к нехватке пищи у хищников и падению их численности, которое вызывает ослабление пресса хищничества и увеличению численности жертвы, что снова приводит к росту популяции жертвы и т.д.

Для данной модели характерна так называемая "нейтральная стабиль­ность", которая означает, что популяции неограниченно долго совершают один и тот же цикл колебаний до тех пор, пока какое-либо внешнее воздействие не изменит их численность, после чего популяции совершают новый цикл колебаний с иными параметрами. Для того, чтобы циклы стали стабильными, популяции должны после внешнего воздействия стремиться вернуться к первоначальному циклу. Такие циклы, в отличие от нейтрально стабильных колебаний в модели Лотки-Вольтерра, принято называть устойчивыми предельными циклами.

Модель Лотки-Вольтерра, тем не менее, полезна тем, что позволяет продемонстрировать основную тенденцию в отношениях хищник-жертва возникновение циклических сопряженных колебаний численности их популяций.

Модель ситуации типа «хищник-жертва»

Рассмотрим математическую модель динамики сосуществования двух биологических видов (популяций), взаимодействующих между собой по типу «хищник-жертва» (волки и кролики, щуки и караси и т.д.), называемую моделью Волътера-Лотки. Впервые она была получена А. Лоткой (1925 г.), А чуть позже и независимо от Лотки аналогичные и более сложные модели были разработаны итальянским математиком В. Вольтерра (1926 г.), работы которого фактически заложили основы так называемой математической экологии.

Пусть есть два биологических вида, которые совместно обитают в изолированной среде. При этом предполагается:

  • 1. Жертва может найти достаточно пищи для пропитания;
  • 2. При каждой встрече жертвы с хищником последний убивает жертву.

Будем для определённости называть их карасями и щуками. Пусть

состояние системы определяется величинами x(t) и y(t) - количеством карасей и щук в момент г. Чтобы получить математические уравнения, которые приближенно описывают динамику (изменение во времени) популяции, поступим следующим образом.

Как и в предыдущей модели роста популяции (см. п. 1.1) для жертв имеем уравнение

где а > 0 (рождаемость превышает смертность)

Коэффициент а прироста жертв зависит от количества хищников (уменьшается с их увеличением). В простейшем случае а- а - fjy (а>0,р>0). Тогда для численности популяции жертв имеем дифференциальное уравнение

Для популяции хищников имеем уравнение

где b >0 (смертность превышает рождаемость).

Коэффициент b убывания хищников уменьшается, если имеются жертвы, которыми можно питаться. В простейшем случае можно принять b - у -Sx {у > 0, S > 0). Тогда для численности популяции хищников получим дифференциальное уравнение

Таким образом, уравнения (1.5) и (1.6) представляют собой математическую модель рассматриваемой задачи взаимодействия популяций. В этой модели переменные х,у - состояние системы, а коэффициенты характеризуют ее структуру. Нелинейная система (1.5), (1.6) и есть модель Вольтера-Лотки.

Уравнения (1.5) и (1.6) следует дополнить начальными условиями - заданными значениями начальных популяций.

Проведем теперь анализ построенной математической модели.

Посгроим фазовый портрет системы (1.5), (1.6) (по смыслу задачи х > 0, v >0). Разделив уравнение (1.5) на уравнение (1.6), получим уравнение с разделяющимися переменными

Игшлрируя это уравнение, будем иметь

Соотношение (1.7) даёт уравнение фазовых траекторий в неявном виде. Система (1.5), (1.6) имеет стационарное состояние определяемое из


Из уравнений (1.8) получим (т.к. л* Ф 0, у* Ф 0)

Равенства (1.9) определяют на фазовой плоскости положение равновесия (точку О) (Рис. 1.6).


Направление движения по фазовой траектории можно определить из таких соображений. Пусть карасей мало. г.е. х ~ 0, тогда из уравнения (1.6) у

Все фазовые траектории (за исключением точки 0) замкнутые кривые, охватывающие положение равновесия. Состоянию равновесия соответствует неизменное количество х« и у« карасей и щук. Караси размножаются, щуки их едят, вымирают, но число тех и дрч их не меняется. "Замкнутым фазовым траекториям соответствует периодическое изменение численности карасей и щук. Причём то, по какой траектории движется фазовая точка, зависит от начальных условий. Рассмотрим, как меняется состояние вдоль фазовой траектории. Пусть точка находится в положении А (рис. 1.6). Здесь карасей мало, щук много; щукам есть нечего, и они постепенно вымирают и почти

совсем исчезают. Но и количество карасей тоже уменьшается почти до нуля и

только потом, когда щук стало меньше, чем у , начинается прирост количества карасей; скорость их прироста увеличивается и их число увеличивается - так происходит примерно до точки В. Но увеличение числа карасей приводит к торможению процесса вымирания шук и их число начинает расти (пищи стало больше) - участок ВС. Далее щук много, они едят карасей и почти всех съедают (участок CD). После этого щуки снова начинают вымирать и процесс повторяется с периодом примерно в 5-7 лет. На рис. 1.7 качественно построены кривые изменения численности карасей и щук в зависимости от времени. Максимумы кривых чередуются, причём максимумы численности щук отстают от максимумов карасей.


Такое поведение характерно для различных систем типа хищник - жертва. Проведем теперь интерпретацию полученных результатов.

Несмотря на то, что рассмотренная модель является простейшей и в действительности всё происходит гораздо сложнее, она позво.чила объяснить кое-что из загадочного, чго есть в природе. Понятны рассказы рыболовов о периодах, когда «щуки сами прыгают в руки», получила объяснение периодичность протекания хронических болезней и т.д.

Отметим еще один интересный вывод, который можно сделать из Рис. 1.6. Если в точке Р происходит быстрый отлов щук (в другой терминологии - отстрел волков), то система «перепрыгивает » в точку Q, и дальнейшее движение происходит по замкнутой траектории меньшего размера, что интуитивно ожидаемо. Если же уменьшить число щук в точке R, то система перейдет в точку S, и дальнейшее движение будет происходить по траектории большего размера. Амплитуды колебаний увеличатся. Это противоречит интуиции, но как раз объясняет такое явление: в результате отстрела волков их численность увеличивается со временем. Таким образом, важным в этом случае является выбор момента отстрела.

Предположим, что две популяции насекомых (например, тля и божья коровка, которая есть тлю) находились в естественном равновесии х-х*,у = у* (точка О на Рис. 1.6). Рассмотрим влияние разового применения инсектицида, который убивает х> 0 из жертв и у > 0 из хищников, не уничтожая их полностью. Уменьшение численности обеих популяций приводит к тому, что изображающая точка из положения О «перескочит» ближе к началу координат, где х > 0, у 0 (Рис. 1.6) Отсюда следует, что в результате действия инсектицида, призванного уничтожать жертв (тлю), число жертв (тли) увеличивается, а число хищников (божьих коровок) уменьшается. Получается, что численность хищников может стать настолько малой, что им будет фозить полное исчезновение но другим причинам (засуха, болезни и т.д.). Таким образом, применение инсектицидов (если только они не уничтожают вредных насекомых практически полностью) в конечном счёте приводит к увеличению популяции тех насекомых, численность которых находилась под контролем других насекомых-хищников. Такие случаи описаны в книгах по биологии.

В общем случае коэффициент прироста количества жертв а зависит и от Л" и от у: а = а(х, у) (из-за наличия хищников и из-за ограничений на пищу).

При малом изменении модели (1.5), (1.6) к правым частям уравнений добавляются малые члены (учитывающие, например, конкуренцию карасей за пищу и щук за карасей)

здесь 0 f.i « 1.

В таком случае вывод о периодичности процесса (возвращении системы к исходному состоянию), справедливый для модели (1.5), (1.6), теряет силу. В зависимости от вида малых поправок/ и g возможны ситуации, показанные на Рис. 1.8.


В случае (1) равновесное состояние О устойчиво. При любых других начальных условиях через достаточно большое время устанавливается именно оно.

В случае (2) система «идёт в разнос». Стационарное состояние неустойчиво. Такая система в конце концов попадает в такую область значений х и у, что модель перестаёт быть применимой.

В случае (3) в системе с неустойчивым стационарным состоянием О устанавливается с течением времени периодический режим. В отличие от исходной модели (1.5), (1.6) в этой модели установившийся периодический режим не зависит от начальных условий. Первоначально малое отклонение от стационарного состояния О приводит не к малым колебаниям около О , как в модели Вольтерра-Лотки, а к колебаним вполне определённой (и не зависящей от малости отклонения) амплитуды.

В.И. Арнольд называет модель Вольтерра-Лотки жесткой, т.к. её малое изменение может привести к выводам, отличным от приведенных выше. Для суждения о том, какая из ситуаций, указанных на Рис. 1.8, реализуется в данной системе, совершенно необходима дополнительная информация о системе (о виде малых поправок/ и g ).

В модели Колмогорова сделано одно существенное допущение: поскольку предполагается, что при то это означает существование в популяции жертв механизмов, регулирующих их численность даже в отсутствие хищников.

К сожалению, подобная формулировка модели не позволяет ответить на вопрос, вокруг которого в последнее время ведется много споров и о котором мы уже упоминали в начале главы: каким образом популяция хищников может оказывать регулирующее воздействие на популяцию жертв с тем, чтобы вся система была устойчива? Поэтому мы вернемся к модели (2.1), в которой механизмы саморегуляции (например, регулирование при помощи внутривидовой конкуренции) в популяции жертв (впрочем, как и в популяции хищников) отсутствуют; поэтому единственным механизмом регуляции численностей, входящих в сообщество видов, являются трофические взаимоотношения между хищниками и жертвами.

Здесь (так что, в отличие от предыдущей модели, Естественно, что решения (2.1) зависят от конкретного вида трофической функции которая, в свою очередь, определяется характером хищничества, т. е. трофической стратегией хищника и защитной стратегией жертвы. Общими для всех этих функций (см. рис. И) являются следующие свойства:

Система (2.1) имеет одну нетривиальную стационарную точку, координаты которой определяются из уравнений

при естественном ограничении .

Существует еще одна стационарная точка (0, 0), соответствующая тривиальному равновесию. Нетрудно показать, что эта точка - седло, а сепаратрисами являются координатные оси.

Характеристическое уравнение для точки имеет вид

Очевидно, что для классической вольтерровской модели .

Поэтому величину f можно рассматривать как меру отклонения рассматриваемой модели от вольтерровской.

стационарная точка - фокус, и в системе появляются колебания; при выполнении противоположного неравенства - узел, и колебания в системе отсутствуют. Устойчивость этого состояния равновесия определяется условием

т. е. существенным образом зависит от вида трофической функции хищника.

Условие (5.5) можно интерпретировать следующим образом: для устойчивости нетривиального равновесия системы хищник - жертва (и тем самым, для существования этой системы) достаточно, чтобы в окрестности этого состояния относительная доля потребляемых хищником жертв возрастала с возрастанием численности жертв. Действительно, доля жертв (от общей их численности), потребляемых хищником, описывается дифференцируемой функцией условие возрастания которой (положительность производной) выглядит как

Последнее условие, взятое в точке есть не что иное, как условие (5.5) устойчивости равновесия. При непрерывности оно должно выполняться и в некоторой окрестности точки Таким образом, если численности жертв в этой окрестности, то

Пусть теперь трофическая функция V имеет вид, изображенный на рис. 11, а (характерный для беспозвоночных). Можно показать, что для всех конечных значений (поскольку выпукла вверх)

т. е. при любых величинах стационарной численности жертв неравенство (5.5) не выполняется.

Это означает, что в системе с таким видом трофической функции не существует устойчивого нетривиального равновесия. Возможны несколько исходов: либо численности как жертвы, так и хищника неограниченно возрастают, либо (при прохождении траектории вблизи одной из координатных осей) в силу случайных причин численность жертвы или численность хищника станет равной нулю. При гибели жертвы через некоторое время погибнет и хищник, если же сначала погибает хищник, то численность жертвы начнет экспоненциально возрастать. Третий вариант - возникновение устойчивого предельного цикла - невозможен, что легко доказывается.

В самом деле, выражение

в положительном квадранте всегда положительно, если только имеет вид, изображенный на рис. 11, а. Тогда, согласно критерию Дюлака в этой области отсутствуют замкнутые траектории и устойчивого предельного цикла существовать не может.

Итак, можно сделать вывод: если трофическая функция имеет вид, изображенный на рис. 11, а, то хищник не может быть регулятором, обеспечивающим стабильность популяции жертвы и тем самым устойчивость всей системы в целом. Система может быть устойчива только в том случае, когда в популяции жертвы существуют собственные внутренние регулирующие механизмы, например, внутривидовая конкуренция или эпизоотии. Этот вариант регулирования был уже рассмотрен в §§ 3, 4.

Ранее отмечалось, что такой тип трофической функции характерен для хищников-насекомых, «жертвами» которых также обычно являются насекомые. С другой стороны, наблюдения за динамикой многих природных сообществ типа «хищник - жертва», включающих в себя виды насекомых, показывают, что для них характерны колебания очень большой амплитуды и весьма специфического вида.

Обычно после более или менее постепенного роста численности (который может происходить либо монотонно, либо в виде колебаний с возрастающей амплитудой) происходит ее резкое падение (рис. 14), и затем картина повторяется. По-видимому, такой характер динамики численностей видов насекомых может быть объяснен неустойчивостью этой системы при малых и средних значениях численности и действием мощных внутрипопуляционных регуляторов численности при больших ее значениях.

Рис. 14. Динамика численности популяции австралийской листоблошки Cardiaspina albitextura, кормящейся на эвкалиптах. (Из статьи: Clark L. R. The population dynamics of Cardiaspina albitextura.-Austr. J. Zool., 1964, 12, № 3, p. 362-380.)

Если же в систему «хищник - жертва» входят виды, способные к достаточно сложному поведению (например, хищники способны к обучению или жертвы способны находить убежище), то в такой системе возможно существование устойчивого нетривиального равновесия. Доказывается это утверждение весьма просто.

В самом деле, трофическая функция тогда должна иметь вид, изображенной на рис. 11, в. Точка на этом графике - точка касания прямой, проведенной из начала координат, графика трофической функции Очевидно, что в этой точке функция имеет максимум. Также легко показывается, что для всех выполняется условие (5.5). Следовательно, нетривиальное равновесие, в котором численность жертв меньше будет асимптотически устойчиво

Однако мы ничего не можем сказать о том, сколь велика область устойчивости этого равновесия. Например, если существует неустойчивый предельный цикл, то эта область должна лежать внутри цикла. Или другой вариант: нетривиальное равновесие (5.2) неустойчиво, но существует устойчивый предельный цикл; в этом случае также можно говорить о стабильности системы хищник - жертва. Поскольку выражение (5.7) при выборе трофической функции типа рис. 11, в может менять знак при изменении при , то критерий Дюлака здесь не работает и вопрос о существовании предельных циклов остается открытым.


КОМПЬЮТЕРНАЯ МОДЕЛЬ «ХИЩНИК-ЖЕРТВА»

Казачков Игорь Алексеевич 1 , Гусева Елена Николаевна 2
1 Магнитогорский государственный технический университет им. Г.И. Носова, институт строительства, архитектуры и искусства, студент 5 курса
2 Магнитогорский государственный технический университет им. Г.И. Носова, институт энергетики и автоматизированный систем, кандидат педагогических наук, доцент кафедры бизнес-информатики и информационных технологий


Аннотация
Данная статья посвящена обзору компьютерной модели «хищник-жертва». Проведенное исследование позволяет утверждать, что экологическое моделирование играет огромную роль в исследовании окружающей среды. Данная проблематика имеет многогранный характер.

COMPUTER MODEL «PREDATOR-VICTIM»

Kazatchkov Igor Alekseevich 1 , Guseva Elena Nikolaevna 2
1 Nosov Magnitogorsk State Technical University, Civil Engineering, Architecture and Arts Institute, student of the 5th course
2 Nosov Magnitogorsk State Technical University, Power Engineering and Automated Systems Institute, PhD in Pedagogical Science, Associate Professor of the Business Computer Science and Information Technologies Department


Abstract
This article provides an overview of the computer model "predator-victim". The study suggests that environmental simulation plays a huge role in the study of the environment. This problem is multifaceted.

Для исследования окружающей нас среды используют экологическое моделирование. Математические модели используют в тех случаях, когда нет естественной среды и нет естественных объектов, она помогает сделать прогноз влияния разных факторов на исследуемый объект. Данный метод берет на себя функции проверки, построения и интерпретацию полученных результатов. На основе таких форм экологическое моделирование занимается оценкой изменений, окружающей нас среды.

В настоящий момент подобные формы используется для изучения окружающей нас среды, а когда требуется изучить какую-либо из ее областей, то применяют математическое моделирование. Данная модель дает возможность спрогнозировать влияние тех или иных факторов на объект изучения. В свое время был предложен тип «хищник – жертва» такими учеными как: Т. Мальтусом (Malthus 1798, Мальтус 1905), Ферхюльстом (Verhulst 1838), Пирлом (Pearl 1927, 1930), а также А. Лотки (Lotka 1925, 1927) и В. Вольтерры (Volterra 1926).Эти модели воспроизводят периодический колебательный режим, возникающий в результате межвидовых взаимодействий в природе.

Одним из основных методов познания является моделировка. Помимо того, что в нем можно спрогнозировать изменения, происходящие в окружающей среде, к тому же помогает найти оптимальный способ решения проблемы. Уже давно в экологии используют математические модели, для того чтобы установить закономерности, тенденции развития популяций, помогают выделить суть наблюдений. Макет может служить образцом поведения, объекта.

При воссоздании объектов в математической биологии используются прогнозирования различных систем, предусматриваются специальные индивидуальности биосистем: внутренне строение особи, условия жизнеобеспечения, постоянство экологических систем, благодаря которым сберегается жизнедеятельность систем.
Появление компьютерного моделирования значительно раздвинуло рубеж способностей исследования. Возникло вероятность многосторонней реализации трудных форм, не допускающих аналитического изучения, появились новейшие направления, а еще имитационное моделирование.

Рассмотрим, что же такое объект моделирования. «Объектом является замкнутая среда обитания, где происходит взаимодействие двух биологических популяций: хищников и жертв. Процесс роста, вымирания и размножения происходит непосредственно на поверхности среды обитания. Питание жертв происходит за счет тех ресурсов, которые присутствуют в данной среде, а питание хищников происходит за счет жертв. При этом питательные ресурсы могут быть как возобновляемые, так и не возобновляемые.

В 1931 году Вито Вольтеррой были выведены следующие законы отношения хищник-жертва.

Закон периодического цикла – процесс уничтожения жертвы хищником нередко приводит к периодическим колебаниям численности популяций обоих видов, зависящим только от скорости роста плотоядных и растительноядных, и от исходного соотношения их численности.

Закон сохранения средних величин – средняя численность каждого вида постоянна, независимо от начального уровня, при условии, что специфические скорости увеличения численности популяций, а также эффективность хищничества постоянны.

Закон нарушения средних величин – при сокращении обоих видов пропорционально их числу, средняя численность популяции жертвы растет, а хищников – падает.

Модель хищник-жертва – это особая взаимосвязь хищника с жертвой, в результате которой выигрывают оба. Выживают наиболее здоровые и приспособленные особи к условиям среды обитания, т.е. все это происходит благодаря естественному отбору. В той среде где нет возможности для размножения, хищник рано или поздно уничтожит популяцию жертвы, в последствии чего вымрет и сам» .

На земле существует множество живых организмов, которые при благоприятных условиях увеличивают численность сородичей до огромных масштабов. Такая способность называется: биотический потенциал вида, т.е. увеличение численности вида за определенный промежуток времени. Каждый вид имеет свой биотический потенциал, к примеру крупные виды организмов за год могут возрасти всего в 1,1 раза, в свою очередь организмы более мелких видов, таких как рачки и т.д. могут увеличить свой вид до 1030 раз, ну а бактерии еще в большем количестве. В любом из этих случаев популяция будет расти в геометрической прогрессии.

Экспоненциальным ростом численности называется геометрическая прогрессия роста численности популяции. Такую способность можно наблюдать в лаборатории у бактерий, дрожжей. В не лабораторных условиях экспоненциальный рост возможно увидеть на примере саранчи или же на примере других видов насекомых. Такой рост численности вида можно наблюдать в тех местах где у него практически нет врагов, а продуктов питания более чем достаточно. В конце концов увеличение вида, после того как численность возросла в течении непродолжительного времени, рост популяции начинал снижаться.

Рассмотрим компьютерную модель размножения млекопитающих на примере модели Лотки-Вольтерры. Пусть на некоторой территории обитают два вида животных: олени и волки. Математическая модель изменения численности популяций в модели Лотки-Вольтерры:

Начальное число жертв - xn, число хищников - yn.

Параметры модели:

P1– вероятность встречи с хищником,

P2– коэффициент роста хищников за счет жертв,

d – коэффициент смертности хищников,

a – коэффициент прироста численности жертв.

В учебной задаче были заданы такие значения: численность оленей равнялось 500, численности волков равна 10, коэффициент прироста оленей равен 0,02, коэффициент прироста численности волков равен 0,1, вероятность встречи с хищником 0,0026, коэффициент роста хищников за счет жертв 0,000056. Данные рассчитаны на 203 года.

Исследуем влияние коэффициент прироста жертв на развитие двух популяций, остальные параметры оставим без изменений. На схеме 1 наблюдается увеличение численности жертвы и затем, с некоторым опозданием наблюдается прирост хищников. Затем хищники выбивают жертв, число жертв резко падает и вслед за ним уменьшается число хищников (рис. 1).


Рисунок 1. Численность популяций при низкой рождаемости у жертв

Проанализируем изменение модели, увеличив коэффициент рождаемости жертвы а=0,06. На схеме 2 мы видим циклический колебательный процесс, приводящий к увеличению численности обоих популяций со временем (рис. 2).


Рисунок 2.Численность популяций при средней рождаемости у жертв

Рассмотрим как изменится динамика популяций при высоком значении коэффициента рождаемости жертвы а=1,13. На рис. 3 наблюдается резкое увеличение численности обеих популяций с последующим вымиранием, как жертвы, так и хищника. Это происходит за счет того, что численность популяции жертв увеличилось до такого количества, что стали заканчиваться ресурсы, вследствие чего происходит вымирание жертвы. Вымирание хищников происходит из-за того, что сократилось количество жертв и у хищников закончились ресурсы для существования.


Рисунок 3.Численность популяций при высокой рождаемости у жертв

Исходя из анализа данных компьютерного эксперимента, можно сделать выводы о том, что компьютерное моделирование позволяет нам прогнозировать численность популяций, изучать влияние различных факторов на популяционную динамику. В приведенном примере мы исследовали модель «хищник-жертва», влияние коэффициента рождаемости жертв на численность оленей и волков. Небольшой прирост популяции жертв приводит к небольшому увеличению жертв, которую через некоторый период уничтожают хищники. Умеренный прирост популяции жертв приводит к увеличению численности обеих популяций. Высокий прирост популяции жертв приводит сначала к быстрому росту популяции жертв, это влияет на увеличение роста хищников, но затем расплодившиеся хищники быстро уничтожают популяцию оленей. В итоге оба вида вымирают.

  • Гусева Е. Н. Теория вероятностей и математическая статистика: учеб. пособие – 5-е изд., дополнено и переработано: [электронный ресурс]/ Е. Н. Гусева. –М.: Флинта, 2011.– 220 с.
  • Ризниченко Г.Ю. Экология математическая. М., 2009 г.
  • рубецков Д. И. Феномен математической модели Лотки-Вольтерры и сходных с ней // Известия Вузов. Прикладная нелинейная динамика. - 2011. - № 2. - С. 69-87.
  • Ризниченко Г.Ю. Экология математическая. М., 2009 г.
  • Вольтерра В. Математическая теория борьбы за существование. Москва-Ижевск:, Институт компьютерных технологий, 2004. - 288 с.
  • Природа мыслей и модели природы. / Под ред. Д.М. Гвишиани, И.Б. Новика, С.А. Пегова. М.: Мысль, 2006 г.
  • Королев А. Компьютерное моделирование/А. Королев: Бином, 2010.
  • Количество просмотров публикации: Please wait

    Часто представители одного вида (популяции) питаются представителями другого вида.

    Модель Лотки – Вольтерры – модель взаимного существования двух популяций типа «хищник – жертва».

    Впервые модель «хищник – жертва» была получена А. Лоткой в 1925 году, который использовал ее для описания динамики взаимодействующих биологических популяций. В 1926 году независимо от Лотки аналогичные (к тому же более сложные) модели были разработаны итальянским математиком В. Вольтерра, глубокие исследования которого в области экологических проблем заложили фундамент математической теории биологических сообществ или т. н. математической экологии.

    В математической форме предложенная система уравнений имеет вид:

    где x – количество жертв, y – количество хищников, t – время, α, β, γ, δ – коэффициенты, которые отражают взаимодействия между популяциями.

    Постановка задачи

    Рассмотрим закрытое пространство, в котором существуют две популяции – травоядные («жертвы») и хищники. Считается, что животных не ввозят и не вывозят и что еды для травоядных животных достаточно. Тогда уравнение изменения числа жертв (только жертв) примет вид:

    где $α$ – коэффициент рождаемости жертв,

    $x$– размер популяции жертв,

    $\frac{dx}{dt}$ – скорость прироста популяции жертв.

    Когда хищники не охотятся, они могут вымирать, значит, уравнение для количества хищников (только хищников) примет вид:

    Где $γ$ – коэффициент убыли хищников,

    $y$ – размер популяции хищников,

    $\frac{dy}{dt}$ – скорость прироста популяции хищников.

    При встрече хищников и жертв (частота встреч прямо пропорциональна произведению) хищники уничтожают жертв с коэффициентом, сытые хищники могут воспроизводить потомство с коэффициентом. Таким образом, система уравнений модели примет вид:

    Решение задачи

    Построим математическую модель совместного существования двух биологических популяций типа «хищник – жертва».

    Пусть две биологические популяции совместно обитают в изолированной среде. Среда является стационарной и обеспечивает в неограниченном количестве всем необходимым для жизни один из видов – жертвы. Другой вид – хищник – также обитает в стационарных условиях, но питается только жертвами. В роли хищников могут выступать коты, волки, щуки, лисы, а в роли жертв – куры, зайцы, караси, мыши соответственно.

    Для определенности рассмотрим в роли хищников – котов, а в роли жертв – кур.

    Итак, куры и коты живут в некотором изолированном пространстве – хозяйственном дворе. Среда предоставляет курам питание в неограниченном количестве, а коты питаются только курами. Обозначим через

    $х$ – количество кур,

    $у$ – количество котов.

    Со временем количество кур и котов меняется, но будем считать $х$ и $у$ непрерывными функциями от времени t. Назовем пару чисел $х, у)$ состоянием модели.

    Найдем каким образом изменяется состояние модели $(х, у).$

    Рассмотрим $\frac{dx}{dt}$ – скорость изменения количества кур.

    Если котов нет, то количество кур возрастает и тем быстрее, чем больше кур. Будем считать зависимость линейной:

    $\frac{dx}{dt} a_1 x$,

    $a_1$ – коэффициент, который зависит только от условий жизни кур, их естественной смертности и рождаемости.

    $\frac{dy}{dt}$ – скорость изменения количества котов (если нет кур), зависит от количества котов y.

    Если кур нет, то количество котов уменьшается (у них нет пищи) и они вымирают. Будем считать зависимость линейной:

    $\frac{dy}{dt} - a_2 y$.

    В экосистеме скорость изменения количества каждого вида также будем считать пропорциональным его количеству, но только с коэффициентом, зависящим от количества особей другого вида. Так, для кур этот коэффициент уменьшается с увеличением количества котов, а для котов возрастает с увеличением количества кур. Будем считать зависимость также линейной. Тогда получим систему дифференциальных уравнений:

    Данная система уравнений называется моделью Вольтерра-Лотки.

    a1, a2, b1, b2 – числовые коэффициенты, которые называют параметрами модели.

    Как видно, характер изменения состояния модели (x, y) определяется значениями параметров. Изменяя данные параметры и решая систему уравнений модели, можно исследовать закономерности изменения состояния экологической системы.

    С помощью программы MATLAB система уравнений Лотки-Вольтерра решается следующим образом:

    На рис. 1 представлено решение системы. В зависимости от начальных условий решения разные, чему отвечают разные цвета траекторий.

    На рис. 2 представлены те же решения, но с учетом оси времени t (т.е. наблюдается зависимость от времени).