Меню

Как животные выбирают свой путь? Ориентирование животных Как животные ориентируются в пространстве и времени.

Гибдд

Ориентация животных — сложный процесс, включающий получение информации о внешнем мире по разным каналам связи (рецепторным системам), её обработку, сопоставление в центральной нервной системе и формирование ответной реакции. Приём и обработка сигналов состоит из распознавания образа (информационного содержания сигнала) и его локации — определения положения источника сигнала по отношению к организму, что осуществляется разными рецепторными системами.

Оптическая ориентация животных определяется прежде всего возможностями зрения органов: глаз и других светочувствительных рецепторов. Последние обычно способны лишь регистрировать степень освещённости, спектральный состав света и степень его поляризации. Так, у ланцетника, примитивного хордового животного, живущего в морском грунте, светочувствительные органы — Глазки Гессе — расположены по всей длине прозрачного тела, вдоль нервной трубки; они регистрируют, всё ли тело животного погружено в грунт, т. е. защищено от нападения хищника. Образное зрение беспозвоночных и особенно позвоночных резко увеличивает возможности ориентация животных в окружающей среде. Необходимость этого возрастает при увеличении подвижности животных. Детальность и сложность анализа зримого мира невелика у беспозвоночных и низших позвоночных. На общем фоне они выделяют лишь немногие биологически важные сигналы. Лягушки, например, «видят» лишь движущиеся предметы небольших размеров (мелких животных, служащих пищей) и реагируют на быстрое затенение («враг»); всё остальное воспринимается ими как безразличный фон. Детальность отражения резко возрастает у насекомых, а также у птиц и млекопитающих, способных ориентироваться не только по множеству «земных» ориентиров, но и по положению Солнца, Луны и звёзд (астронавигация). По ним ориентируются и мелкие раки, возвращающиеся при отливе в море. Рыжие лесные муравьи способны учитывать и положение Луны. «Инстинкт дома» — способность возвращаться на свой участок или в убежище даже из незнакомого места — объясняется запоминанием характерных особенностей ландшафта и астронавигацией. Обязательное условие астронавигации — наличие «биологических часов», т. е. способности организма ориентироваться во времени.

Хеморецепция и ориентация животных по особенностям химического состава среды особенно широко распространены среди обитателей воды и почвы. Проходные лососёвые рыбы при нерестовых миграциях находят «родные» реки по знакомым запахам. Киты при миграциях руководствуются особенностями химического состава воды разных мор. течений. По запахам ориентируются наземные животные при поисках пищи, миграциях и расселении. В последнем случае животные двигаются преимущественно против ветра и картина их расселения соответствует «розе ветров». Для самцов некоторых бабочек (сатурний, шелкопрядов) доказана способность находить по запаху самку на расстоянии до 10 км.

Акустическая ориентация животных имеет преимущества в водной среде и биотопах с густой растительностью, где возможности зрения ограничены. Многие хищники находят и ловят добычу по слуху. Сова по шороху определяет местоположение грызуна на расстоянии 15—20 м с точностью до 1о (пассивная локация). Летучие мыши и дельфины используют эхолокацию на частотах 20—200 кгц, посылая зондирующие сигналы и ловя их отражение (эхо) от мишени (добычи) или препятствия. Эхолокация позволяет им ориентироваться, находить и ловить добычу в темноте. Гнездящаяся в тёмных пещерах птица Гуахаро ориентируется в них, эхолоцируя на слышимых частотах (в звуковом диапазоне).
Многие низшие беспозвоночные (например, планарии), а также насекомые (мухи, жуки, термиты) ориентируются по магнитному полю Земли.

Ориентация животных — всегда результат сопоставления информации, полученной по разным каналам связи со средой, т. е. интегральная реакция, хотя основную роль в ней в зависимости от ситуации может играть то одна, то др. рецепторная система. Подобный механизм ориентация животных повышает её надёжность («помехоустойчивость»), гибкость и значительно увеличивает приспособительное значение. Одновременно ориентацнонное поведение каждой особи корректируется сочленами по популяции, стаду, стае или колонии. Обмен информацией между особями увеличивает её количество в группе, ещё более повышая надёжность ориентация животных Именно этим объясняется преимущество группового (стайного или стадного) образа жизни в биологически наиболее важные моменты: при миграциях, во время размножения, в период роста молодняка.

В мышцах майского жука имеются чувствительные рецепторы. Они передают информацию о положении тела насекомого.

Волоски, нервные окончания, перья и рецепторы помогают ориентироваться в пространстве.

Водяные скорпионы не очень хорошие пловцы и большую часть времени проводят, прячась среди растительных остатков в илистых прудах и канавах.

Плавая во время охоты, водяной скорпион ориентируется при помощи шести маленьких, наполненных воздухом дыхалец - отверстий на брюшной поверхности. Каждое отверстие затянуто тонкой мембраной. На глубине, где давление воды возрастает, воздух сжимается, и мембрана вдавливается внутрь. Если голова скорпиона ближе к поверхности, чем хвост, дыхальца, расположенные ближе к голове, испытывают меньшее давление, чем находящиеся ближе к хвосту, и передние мембраны вдавливаются слабее, чем задние. Это подсказывает водяному скорпиону, что он движется к поверхности.

Африканские шпорцевые лягушки находят дорогу домой, используя для этого органы боковой линии. Каждый такой орган окружен микроскопическими волосками, которые сгибаются под давлением воды, омывающей тело, посылая сигналы от нервных окончаний в мозг. Это позволяет лягушке соразмерять свое движение с течением воды и соответственно регулировать его направление.

Оставалось возможным только одно решение: оптомоторный механизм не выключается! Просто появляется новая целевая установка. Вместо правила "никакого движения изображения на сетчатке", которое заставляло муху оставаться неподвижной, в ход вступает новое - "движение в определенном направлении с определенной скоростью". Вот новая целевая установка, которую с такой очевидностью продемонстрировал нам этот выдающийся эксперимент. Глаза правильно ориентируют насекомое, только находясь в нормальном положении относительно туловища. Будучи перевернутыми, они сообщают мухе неверные сведения: когда насекомое поворачивается влево, ему кажется, что произошел поворот вправо. При попытке выправить свои действия муха лишь еще больше поворачивается влево, то есть в сторону, противоположную той, куда она стремится повернуться. В результате - безумное вращение на одном месте.

Этим опытом было доказано, что мозг способен так "организовать" зрительные центры, которые обрабатывают поступающую извне информацию, что они в точном соответствии с дальнейшими "намерениями" животного постоянно изменяют целевую установку. Нормальная муха беспрепятственно поворачивается вправо или влево соответственно своим потребностям. Одновременно изменяется и целевая установка, которая удерживает направление и степень поворота в определенных рамках. Но как конкретно действует этот внутренний механизм - до сих пор еще загадка.

Каждый из нас может проделать простейший опыт, чтобы убедиться в том, что заданная целевая установка связана с определенными телодвижениями. Если окружающие нас вещи начинают перемещаться, мы соответствующим образом реагируем на их движение. Но это не та оптомоторная реакция, которая наблюдалась в опыте с мухой, помещенной внутри цилиндра; мы не отвечаем на перемещение предметов собственным движением в ту же сторону, а только видим, что предметы меняют свое местоположение. Если двигать глазами из стороны в сторону, у нас не появится ощущения, что окружающий мир пришел в движение, хотя изображение предметов на нашей сетчатке при этом переместится. И здесь возникает та же проблема, что и в опыте с мухой: меняется ли целевая установка от своего первоначального значения "никакого движения изображения на сетчатке" до нового - "движение в определенном направлении с определенной скоростью"?

Давайте закроем один глаз и слегка нажмем пальцем на веко другого, открытого. При этом глазное яблоко слегка повернется, но его движение будет пассивным, поскольку оно вызвано не работой мышц, а нажатием пальца. И мы увидим, что наша комната начнет двигаться.


Почему же такое ощущение не возникает, когда мы произвольно меняем положение глаз? Вероятно, в этом случае наш мозг каким-то образом дает приказ, или установку, - "ожидать перемещения изображения на сетчатке". Когда глазное яблоко передвигается при помощи соответствующих мышц, последние получают из мозга такую команду, когда же мы двигаем глазное яблоко пальцем, команды не поступает. Мозг приказывает мышцам "двигайся", и это приказание позволяет предвидеть предстоящее движение изображения на сетчатке. Целевая установка в отношении зрительных стимулов изменяется лишь в том случае, если мозг послал подобную команду. Когда же мы передвигаем глазное яблоко с помощью пальца, мышцы глаза не получают от мозга никаких указаний; установки на последующее, ожидаемое движение не возникает, и нам кажется, что комната движется.

Рассмотрим противоположную ситуацию. Допустим, что команда "двигайся" поступила от мозга в глаза, но они остаются неподвижными. Такая вещь возможна, если временно парализовать глазные мышцы каким-либо наркотиком.

Итак, команда ожидать некое движение поступила, появилась новая целевая установка, но соответствующие зрительные стимулы не возникают, поскольку глаза остаются неподвижными. Результат оказывается неожиданным: пытаясь перевести взгляд с одного предмета на другой и будучи не в состоянии сделать это, человек видит, что все вокруг него движется. В этот момент он может воочию убедиться в существовании целевой установки, о которой здесь столько говорилось.

Познакомившись с этими экспериментами, мы только бегло заглянули в мир необычайно сложных и почти совершенно непознанных процессов, которые должны совершаться в мозгу одновременно с последовательными актами поведения. Ни одно звено такой цепи поведенческих актов не может обойтись без соответствующего механизма ориентации. В момент переключения с одного действия на другое неизменно используется и новый ориентирующий механизм, то есть установка. Отправляясь из своего улья на сбор нектара и пыльцы, пчела первоначально руководствуется целой серией ориентиров на местности, которые попадаются ей на пути. Когда цветы-медоносы уже недалеко и насекомое видит их, ведущим стимулом оказываются общие очертания растений (пчелу легко ввести в заблуждение, показав ей издалека зеленый предмет, по форме напоминающий растение). На более близком расстоянии пчелу привлекает окраска венчиков, затем знакомый запах - зрительные и химические "путеводители пчел". Когда насекомое оказывается внутри цветка, в дело вступают новые стимулы - запах нектара и ощущения от прикосновения к органам цветка. Роль каждого из этих стимулов состоит не только в том, чтобы вызвать очередную стадию в общей цепи действий и отключить предыдущую. Они одновременно заставляют действовать соответствующий механизм ориентации с его целевыми установками.

Процесс обучения также может изменять целевые установки . Выкапывая норку на новом месте, роющая оса осваивает и новые ориентиры, а ворона возвращается туда, где год назад нападала на филина, ибо запомнила этот участок леса. Когда лосось, руководствуясь обонянием, заходит из моря в ту самую реку, где вырос, то и в этом случае поведение рыбы включает целевые установки, приобретенные в результате обучения.

Совершенно особый и чрезвычайно затруднительный для объяснения случай изменения целевых установок представляет способность перелетных птиц ориентироваться по солнцу. Уже можно считать доказанным, что скворцы, летящие осенью на юго-запад, определяют направление пути именно по этому светилу. Но ведь в течение немногих утренних часов, когда птицы совершают перелет, положение солнца на небосводе существенно меняется. И тем не менее скворцы держат правильный курс. Исследования показали, что их целевая установка изменяется с изменением времени суток. обладают своего рода "внутренними часами". Как действуют эти внутренние часы, нам пока не известно.

Еще одна проблема, связанная с ориентацией в пространстве, возникает в тех случаях, когда движение одной части тела, например ноги или плавника, направляется деятельностью органа чувств (например, глаза), расположенного в другой части тела. Как объяснить столь быстрые и резкие движения конечностей животного, что даже глаза не в состоянии уследить за ними? Вспомним богомола, который ловит муху, молниеносно выбрасывая в ее сторону передние ноги. Заметив жертву, богомол следит за ней, поворачивая только голову. При этом тело насекомого остается неподвижным. И тем не менее, когда богомол пускает в ход свое орудие лова - передние ноги, он настигает цель с безошибочной точностью.

Каким же образом хватательные ноги "узнают" о том, что видят глаза , точнее, направление, в котором следует нанести удар? Вспомним, что выброс хватательных ног настолько стремителен, что его едва ли можно скорректировать на полпути при помощи зрения. Даже если богомол заметит, что его телодвижение неточно, будет уже поздно изменить направление броска. Совершенно ясно, что нацеливающий механизм должен быть безошибочно настроен еще до начала броска. Эта настройка осуществляется предшествующими движениями головы насекомого.

Дело в том, что у богомола есть особый чувствительный орган - щеточка из особых волосков, расположенных на переднегруди насекомого. Сигналы, постоянно идущие от этих волосков в центральную нервную систему, способствуют тому, что насекомое в обычном состоянии держит голову прямо. Всякий поворот головы повышает давление на волоски в том или ином участке переднегруди. При виде мухи в центральной нервной системе происходит оценка различий между противоречивыми сигналами: один из них приходит от глаз и заставляет богомола повернуть голову в сторону сидящей мухи, другой посылается волосками и приказывает держать голову прямо. Именно эти различия и диктуют передним ногам направление, в котором следует нанести удар. Если обрезать богомолу чувствительные волоски, насекомое будет выбрасывать ноги только прямо вперед - независимо от того, в каком направлении повернута его голова.

Можно задать вопрос: почему богомол вообще поворачивает голову? Почему зрительный сигнал относительно направления, где находится жертва, не передается непосредственно в центральную нервную систему? Главная причина этого, вероятно, состоит в том, что богомолу надо определить не только направление, в котором находится возможная добыча, но и расстояние до нее. Расстояние же можно определить только при помощи обоих глаз, посредством бинокулярного зрения. Богомол, лишенный одного глаза, выбросит ноги в правильном направлении, но будет стараться схватить жертву слишком далеко, если она мала, и слишком близко, если велика, поскольку оценка расстояния в этом случае основывается только на кажущихся размерах жертвы.

Итак, мы познакомились с тем, насколько разнообразны механизмы, используемые различными животными в целях ориентации, и каким образом, подобно множеству других жизненных процессов, они служат поддержанию некоего устойчивого состояния. Постоянное положение тела или необходимое направление при передвижении определяются соответствующими пространственными характеристиками внешней среды. Так же как и в других жизненных процессах, это осуществляется за счет сложной системы отрицательных обратных связей: каждое отклонение от нормы фиксируется и открывает дорогу именно тем действиям, которые выправят положение. По мере того как животное меняет свое поведение, центральная нервная система получает сообщение об этих изменениях и дает подходящую к случаю целевую установку.

Сиамский котенок опасливо поглядывает вниз, боясь упасть с высоты около 60 сантиметров. На самом деле никакой опасности нет, поскольку перед ним находится кусок стекла, служащий продолжением верхней площадки. Котенку еще не пришлось узнать, что такое высота, и тем не менее он не решается наступить на стекло. Этот опыт показывает, что страх животного перед высотой определенно не связан с обучением.


Литература: Тинберген Н. Поведение животных. Пер. с англ. О. Орлова и Е. Панова. Предисл. К. Э. Фабри. М., "Мир", 1978. 192 с. с ил.

Ориентация животных в пространстве является одной из самых загадочных их особенностей. Они находят дорогу домой, даже, если судьба забросит их в очень отдаленные места.

Эта история произошла в середине прошлого века во Франции, в Париже. У мальчика-чистильщика обуви был верный четвероногий друг- собака, которая наверно понимала, что их общий ужин зависит от количества клиентов. Поэтому она крутилась под ногами у прохожих и будто бы нечаянно пачкала их башмаки. Про удивительного песика прослышал один богатый англичанин и уговорил мальчика продать собачку. Она отправилась в Туманный Альбион.

Но через три недели умный песик опять пачкал ботинки парижан в столице Франции. Как он мог переправиться через пролив Ла-Манш, история умалчивает, но с тех пор друзья больше не расставались.

Ориентацией в пространстве славятся и .

Рекорд побил кот Чапа, который преодолел расстояние в 1500 километров: из Вольска он вернулся в родной Екатеринбург, назад к хозяевам.


А кот -американец три месяца разыскивал свой дом. Он потерялся во время путешествия за 320 километров. Но дом нашел!

Ну где же спрятан этот особый компас у братьев наших меньших? Эта загадка давно интересует ученых, поэтому сегодня в биологии уже создан раздел, который исследует ориентацию животных в пространстве. И называется он-бионавигация.

Оказывается, что в поисках нужного направления животные используют и нюх, и зрение, и тонкий слух. Однако, как ни напрягай глаза, носы, усы и уши, свой родной дом с большого расстояния не разглядишь и не учуешь. Что же еще выступает в роли навигатора?


Не так давно американские ученые предположили, что ориентация животных происходит по магнитным линиям нашей планеты. А выглядит это примерно так: магнитное поле влияет на радикалы, которые образуются в молекулах криптохрома-особого белка, входящего в состав клеток живого организма. Разобраться нам простым смертным тяжело, но все-таки попробуем.

Представьте себе эту молекулу белка, которая обладает магнитными свойствами. Когда она находится в привычном поле, животное испытывает комфорт. Стоит увезти питомца далеко от дома, магнитное поле меняется, и молекула белка начнет поворачиваться в соответствии с силовыми линиями поля, раздражая нервные окончания. Животное будет себя чувствовать неуютно до тех пор, пока не вернется к привычному месту жительства, то есть к привычному магнитному полю.

Пока это лишь гипотеза, которую еще не доказали, но уже сегодня известно, что по магнитным линиям Земли дорогу находят не только кошки и собаки, но и пчелы, и мухи, жуки, термиты, морские черепахи и многие беспозвоночные животные.


Птицы, отправляясь на зимовку и возвращаясь домой, ориентируются по Солнцу, звездам или изменению атмосферного давления.

В мире животных очень важны первые детские впечатления.

Одни тихоокеанские лососи выходят из икринок в дальневосточных регионах, другие-в ручьях Канады. Потом они переселяются в океан, где растут и достигают зрелости. Но размножаться каждые уходят к "своим" истокам. В океане они используют астрономические или магнитные ориентиры, а у берегов, при выборе родных ручьев и рек, ориентируются по запаху.

Обитателям воды и почвы помогает способность ориентации по особенностям химического состава среды. Принцип все тот же-непривычный химический состав вызывает неприятные ощущения, поэтому существо всеми силами стремится попасть в родное пространство.

Исследования ученых еще не закончены и очевидно, что очень многое еще предстоит открыть, но хотя бы по данным результатам мы можем судить, как происходит ориентация животных в пространстве.

Видео: Лялечка и Бусинка

Мои проказницы Лялечка и малышка Бусинка
  • Октябрь 16, 2013 Хочу похвастаться штанишками! Мой мастер класс попал в журнал! }