Меню

Самые известные изобретатели. Самые великие открытия и изобретения человечества Знаменитые ученые и их изобретения

Прочие системы автомобиля

Мы живём в уникальное время! Чтобы облететь пол-Земли, нужно всего полдня, наши сверхпроизводительные смартфоны в 60.000 раз легче первоначальных компьютеров, а сегодняшнее сельскохозяйственное производство и продолжительность жизни - самые высокие за всю историю человечества!

Мы обязаны этими огромными достижениями небольшому количеству великих умов - учёным, изобретателям и ремесленникам, которые придумали и разработали продукты и механизмы, на которых и строится современный мир. Без этих людей и их выдающихся изобретений мы отправлялись бы спать с заходом солнца и застряли бы в тех временах, когда не существовало машин и телефонов.

В этом списке мы расскажем о наиболее важных и решающих последних изобретениях, их истории и значении в развитии человечества. Сможете угадать, о каких именно изобретениях пойдёт речь?

От методов дезинфицирования продуктов и повышения их безопасности до токсичного газа, способствовавшего формированию основы международной торговли, и изобретения, которое привело к сексуальной революции и раскрепостило людей - каждое из этих творений отразилось на жизни людей самым непосредственным образом. Узнайте о 25 выдающихся изобретениях, которые изменили наш мир!

25. Цианид

Хотя цианид и является довольно мрачным способом начать этот список, это химическое вещество сыграло важную роль в истории человечества. В то время как его газообразная форма стала причиной смерти миллионов людей, цианид служит основным фактором для извлечения золота и серебра из руды. А поскольку мировая экономика была привязана к золотому стандарту, цианид служил и продолжает оставаться важным фактором в развитии международной торговли.

24. Самолёт


Ни у кого не возникает сомнений в том, что изобретение "железной птицы" оказало одно из величайших влияний на историю человечества.

Радикально сокращающий время, необходимое для транспортировки людей и грузов, самолёт был изобретён братьями Райт, которые основывались на работе предыдущих изобретателей, таких как Джордж Кейли (George Cayley) и Отто Лилиенталь (Otto Lilienthal).

Их изобретение было охотно принято значительной частью общества, после чего начался "золотой век" авиации.

23. Анестезия


До 1846 года между хирургическими процедурами и мучительными экспериментальными пытками практически не существовало разницы.

Анестетики используются уже на протяжении тысяч лет, хотя их ранние формы представляли собой гораздо упрощённые версии, такие как, например, алкоголь или экстракт мандрагоры.

Изобретение современной анестезии в форме закиси азота ("веселящего газа") и эфира позволило врачам проводить операции, не боясь причинить пациентам боли. (Бонус-факт: говорят, кокаин стал первой эффективной формой местной анестезии после того, как его использовали в глазной хирургии в 1884 году.)

22. Радио


История изобретения радио не так однозначна: кто-то утверждает, что его изобрёл Гульельмо Маркони (Guglielmo Marconi), кто-то настаивает, что это был Никола Тесла (Nikola Tesla). В любом случае, эти два человека опирались на работу многих известных своих предшественников, прежде чем удалось успешно передать информацию посредством радиоволн.

И хотя сегодня это является уже привычным делом, попробуйте представить, чтобы в 1896 году вы кому-то сказали, что можете передать информацию по воздуху. Вас бы приняли за умалишённого или одержимого бесами!

21. Телефон

Телефон стал одним из самых важных изобретений современного мира. Как и в случае с большинством великих изобретений, его изобретатель и люди, сделавшие значимый вклад в его появление, обсуждаются в горячих спорах и дискуссиях до сих пор.

Единственное, что известно наверняка, это то, что первый патент на телефон был выдан патентным ведомством США Александру Грейаму Беллу (Alexander Graham Bell) в 1876 году. Этот патент послужил основой для дальнейшего исследования и развития электронной передачи звука на большие расстояния.

20. "Всемирная паутина, или WWW


Хотя большинство из нас предполагает, что это изобретение является недавним, на самом деле Интернет существовал в своей устаревшей форме ещё в 1969 году, когда американские военные разработали сеть ARPANET (Advanced Research Project Agency Network, сеть Управления перспективного планирования научно-исследовательских работ).

Первое сообщение, которое планировалось передать через Интернет - "log in" ("войти") - вывело систему из строя, поэтому удалось отправить только "lo". Всемирная паутина, какой мы её знаем сегодня, появилась тогда, когда Тим Бернерс-Ли (Tim Berners-Lee) создал сеть гипертекстовых документов, а Университет штата Иллинойс - первый браузер Mosaic.

19. Транзистор


Кажется, нет ничего проще, чем поднять трубку телефона и связаться с кем-нибудь на Бали, в Индии или Исландии, однако ничего не получилось бы без транзистора.

Благодаря этому полупроводниковому триоду, усиливающему электрические сигналы, стало возможным передавать информацию на огромные расстояния. Человек, который был одним из изобретателей транзистора - Уильям Шокли (William Shockley) - основал лабораторию, стоявшую у истоков создания Кремниевой долины.

18. Квантовые часы


Хоть это и может показаться не таким революционным, как многое из перечисленного ранее, но изобретение квантовых (атомных) часов было решающим для развития человечества.

Используя микроволновые сигналы, излучаемые изменяющимися энергетическими уровнями электронов, квантовые часы с их точностью сделали возможным широкий ряд современных изобретений, в том числе GPS, ГЛОНАСС и Интернет.

17. Паровая турбина


Паровая турбина Чарльза Парсонса (Charles Parsons) раздвинула границы технического прогресса человечества, придав мощности индустриальным странам и способствуя тому, чтобы корабли смогли пересекать огромные океаны.

Двигатели работают благодаря вращению вала с помощью сжатого водяного пара, генерирующего электроэнергию - одно из главных отличий паровой турбины от паровой машины, что сделало революцию в промышленности. Только в 1996 году 90% всей вырабатываемой электроэнергии в США были произведены паровыми турбинами.

16. Пластмасса


Несмотря на повсеместное использование в современном обществе, пластмасса является относительно недавним изобретением, появившимся лишь сто с лишним лет назад.

Этот влагостойкий и невероятно податливый материал используется практически в каждой отрасли промышленности - от упаковки продуктов до производства игрушек и даже космических летательных аппаратов.

Хотя большинство современных видов пластмассы производится из нефти, всё чаще звучат призывы к тому, чтобы вернуться к первоначальной версии, которая была частично природной и органической.

15. Телевидение


Телевидение имеет длительную и легендарную историю, которая началась в 1920-х годах и развивается до сих пор, вплоть до появления современных возможностей, таких как DVD-диски и плазменные панели.

Будучи одним из самых популярных потребительских товаров по всему миру (почти 80% домохозяйств имеют хотя бы один телевизор), это изобретение стало совокупным результатом многочисленных предыдущих , благодаря которым появился продукт, ставший главным источником влияния общественного мнения в середине XX века.

14. Нефть


Большинство из нас дважды не задумываются, прежде чем наполнять бензобак автомобиля. Хотя человечество добывает нефть уже в течение тысячелетия, современная газовая и нефтяная промышленность начала своё развитие во второй половине XIX века - после того, как на улицах появились современные фонари.

Оценив огромное количество энергии, которое вырабатывается при сжигании нефти, промышленники кинулись строить скважины для добычи "жидкого золота".

13. Двигатель внутреннего сгорания

Не будь производительной нефти, не было бы и современного двигателя внутреннего сгорания.

Применяемые во многих сферах человеческой деятельности - от автомобилей до сельскохозяйственных комбайнов и экскаваторов - двигатели внутреннего сгорания позволяют заменить людей машинами, способными выполнить непосильную, кропотливую и трудоёмкую работу за считанное время.

Также благодаря этим двигателям человек получил свободу передвижения, поскольку они использовались в первоначальных самоходных средствах передвижения (автомобилях).

12. Железобетон


До появления в середине XIX века железобетона человечество могло безопасно возводить здания только до определённой высоты.

Встраивание стальных арматурных стержней перед заливкой бетона упрочило его, благодаря чему рукотворные сооружения теперь способны вынести гораздо больший вес, позволяя нам строить здания и сооружения ещё больше и выше, чем когда-либо до этого.

11. Пенициллин


Сегодня на нашей планете было бы гораздо меньше людей, если бы не пенициллин.

Официально открытый шотландским учёным Александром Флемингом (Alexander Fleming) в 1928 году, пенициллин стал из самых значимых изобретений (в большей степени, открытий), которое сделало возможным наш современный мир.

Антибиотики стали одними из первых лекарств, способных должным образом справиться со стафилококком, сифилисом и туберкулёзом.

10. Охлаждение


Укрощение огня было, возможно, самым важным открытием человечества на сегодняшний день, однако на это ушло бы не одно тысячелетие, пока мы не укротили холод.

Хотя человечество уже давно использует лёд для охлаждения, его практичность и доступность до некоторых пор была ограничена. В XIX веке человечество значительно продвинулось в своём развитии после того, как учёные изобрели искусственное охлаждение, используя химические элементы, впитывающие тепло.

К началу 1900-х почти каждый мясокомбинат и крупный оптовик использовали искусственное охлаждение для хранения продуктов.

9. Пастеризация


Способствуя спасению жизни многих людей за полвека до открытия пенициллина, Луи Пастер (Louis Pasteur) придумал процесс пастеризации или нагревания продуктов (изначально это было пиво, вино и молочные продукты) до температуры, достаточно высокой для того, чтобы убить большинство бактерий, вызывающих гниение.

В отличие от стерилизации, убивающей все бактерии, пастеризация, сохраняя вкусовые качества продукта, сокращает количество только потенциальных патогенов, снижая его до уровня, при котором они не способны нанести вред здоровью.

8. Солнечная батарея


Подобно тому, как нефть послужила толчком для развития промышленности, изобретение солнечной батареи позволило нам использовать возобновляемый источник энергии гораздо более эффективным образом.

Первая практическая солнечная батарея была разработана в 1954 году специалистами лаборатории компании Bell Telephone на основе кремния. Спустя годы эффективность солнечных батарей резко возросла вместе с их популярностью.

7. Микропроцессор


Если бы не был изобретён микропроцессор, то мы бы никогда так и не узнали про ноутбуки и смартфоны.

Один из наиболее широко известных суперкомпьютеров - ЭНИАК (ENIAC) - был создан в 1946 году и весил 27.215 кг. Инженер-электронщик компании Intel и всемирный герой Тед Хофф (Ted Hoff) разработал первый микропроцессор в 1971 году, поместив функции суперкомпьютера в один маленький чип, тем самым сделав возможным появление портативных компьютеров.

6. Лазер


Акроним от "Light Amplification by Stimulated Emission of Radiation" ("усиление света посредством вынужденного свечения"), лазер был изобретён в 1960 году Теодором Мейманом (Theodore Maiman). Усиленный свет закрепляется посредством пространственной когерентности, что позволяет свету оставаться сфокусированным и сконцентрированным на большие расстояния.

В современном мире лазеры используются почти повсеместно, включая лазерные отрезные станки, сканеры штрихкодов и хирургическое оборудование.

5. Азотофиксация (связывание азота)


Хотя этот термин может показаться слишком научным, азотофиксация на самом деле ответственна за резкое увеличение человеческой популяции на Земле.

Преобразовывая атмосферный азот в аммиак, мы научились производить высокоэффективные удобрения, благодаря которым на тех же участках земли стало возможным увеличение объёмов производства, что значительно улучшило нашу сельскохозяйственную продукцию.

4. Сборочный конвейер


Влияние ставших обыденными изобретений, которое они имели в своё время, вспоминается редко, однако значимость сборочного конвейера переоценить невозможно.

До его изобретения все изделия кропотливо делались вручную. Сборочная линия позволила создать массовое производство одинаковых компонентов, значительно сократив время на изготовление нового продукта.

3. Противозачаточная таблетка


Хотя пилюли и таблетки были одними из основных методов приёма лекарств в течение тысяч лет, изобретение противозачаточной таблетки стало самым революционным из них.

Одобренный для использования в 1960 году и теперь принимаемый более 100 миллионами женщин по всему миру, этот комбинированный оральный контрацептив стал главным толчком к сексуальной революции и изменил диалог о репродуктивной способности, в значительной степени переложив ответственность выбора с мужчин на женщин.

2. Мобильный телефон / смартфон


Скорее всего, прямо сейчас вы читаете или просматриваете этот список со своего смартфона.

Хотя первым широко известным смартфоном стал iPhone, появившись на рынке в 2007 году, за это мы должны благодарить Motorola, его "древнего" предшественника. В 1973 году именно эта компания выпустила первый беспроводной карманный мобильный телефон, который весил 2 килограмма и заряжался по 10 часов. Что ещё хуже, по нему можно было говорить в течение всего 30-ти минут, прежде чем аккумулятор снова требовал зарядки.

1. Электричество


Большинство современных изобретений из этого списка не были бы даже отдалённо возможны, если бы не самое величайшее из них - электричество. Пока кто-то думает, что возглавить этот список должен Интернет или самолёт, оба этих изобретения должны быть благодарны электричеству.

Уильям Гильберт (William Gilbert) и Бенджамин Франклин (Benjamin Franklin) были пионерами, заложившими первоначальную базу, на которой основывались такие великие умы, как Алессандро Вольта (Alessandro Volta), Майкл Фарадей (Michael Faraday) и другие, спровоцировав Вторую промышленную революцию и открыв эру освещения и электроснабжения.

ЗНАМЕНИТЫЕ УЧЕНЫЕ, ИЗОБРЕТАТЕЛИ И КОНСТРУКТОРЫ

ГЕОРГИЙ АГРИКОЛА (1494–1555)

Георгий Агрикола - немецкий врач и ученый. Заложил основы минералогии и геологии, горного дела и металлургии. В главном труде своей жизни - 12-томной монографии «О металлах» дал полное и систематическое описание поиска и разведки полезных ископаемых, добычи и обогащения руд, металлургических процессов. Установил методы определения и описал двадцать новых минералов.

АРХИМЕД (Около 287–212 до н. э.)

Ахримед - древнегреческий математик, физик и изобретатель. Разработал теорию рычага, применял на практике винт, блок и рычаг для подъема воды и тяжелых грузов.

Более 2000 лет прошло с тех пор, как погиб Архимед, но и сегодня память людей хранит его слова: «Дайте мне точку опоры и я подниму Землю». Так сказал этот выдающийся древнегреческий ученый - математик, физик, изобретатель, разработав теорию рычага и поняв его возможности. На глазах правителя Сиракуз Архимед, воспользовавшись сложным устройством из полиспастов и рычагов, в одиночку спустил на воду корабль. Девизом каждого, кто нашел новое, служит слово: «Эврика!» («Нашел!»). Так воскликнул ученый, открыв закон, известный многим как закон Архимеда. До наших дней архимедовым винтом называют заключенный в трубу широкий винт, который он изобретал как средство для подъема воды. Архимед изобрел как сельскохозяйственные машины - для орошения полей, так и военные - метательные. Заложил основы гидростатики, установил главный ее закон, изучал условия плавания тел.

Особенно ярко технический гений Архимеда проявился, когда римская армия напала на его город Сиракузы. Военные машины Архимеда вынудили римлян отказаться от штурма и перейти к осаде города. Лишь предательство открыло врагу ворота Сиракуз. Легенда гласит, что когда римский легионер занес меч над ученым, тот не просил пощады, а лишь воскликнул: «Не трогай моих кругов!» До момента гибели Архимед решал геометрическую задачу.

В наше время в Греции решили проверить, действительно ли Архимед мог поджечь солнечными лучами флот римлян. Семьдесят человек выстроились на берегу моря, держа в руках медные щиты, подобные тем, какими пользовались защитники Сиракуз. Когда они навели солнечные «зайчики» на макет деревянного судна, он вспыхнул через несколько секунд.

ФРЭНСИС БЭКОН (1561–1626)

Фрэнсис Бэкон - английский ученый и политический деятель. Считал, что цель науки заключается в овладении силами природы, а в фундамент науки следует положить наблюдения и опыты. Написал роман-утопию «Новая Атлантида», в котором предсказал много нынешних изобретений - самолеты, подводные корабли, гидростанции, солнечные двигатели, лазеры, телескопы, кондиционеры и т. д.

АЛЕКСАНДР ГРЕЙАМ БЕЛЛ (1847–1922)

Александр Грейам Белл является изобретателем телефона. Он родился в Эдинбурге, в Шотландии. Впоследствии семья Белла переехала в Канаду, а затем в США. По образованию Белл не был ни инженером-электриком, ни физиком. Он начал помощником учителя музыки и ораторского искусства, позднее стал работать с людьми, страдавшими дефектами речи, потерявшими слух.

Белл стремился помочь этим людям и любовь к девушке, оглохшей после тяжелой болезни, побудило его сконструировать приборы, с помощью которых он мог демонстрировать глухим артикуляцию звуковой речи. В Бостоне он открыл учебное заведение по подготовке преподавателей для глухих. В 1893 году Александр Белл становится профессором физиологии органов речи Бостонского университета. Он тщательно изучает акустику, физику человеческой речи, а затем начинает ставить опыты с аппаратом, в котором мембрана передавала колебания звуков на иглу. Так он постепенно приближался к идее телефона, с помощью которого может стать возможной передача различных звуков, если только удастся вызвать колебания электрического тока, соответствующие по интенсивности тем колебаниям в плотности воздуха, которые производит данный звук.

Но вскоре Белл меняет направление деятельности и начинает работать над созданием телеграфа, с помощью которого можно было бы одновременно передавать несколько текстов. В работе по созданию телеграфа случайность помогла Беллу открыть явление, которое обернулось изобретением телефона.

Однажды в передающем устройстве помощник Белла вытаскивал пластинку. В это время в приемном устройстве слух Белла уловил дребезжание. Как выяснилось, пластинка замыкала и размыкала электрическую цепь. К этому наблюдению Белл отнесся очень внимательно. Через несколько дней первый телефонный аппарат, состоящий из небольшой мембраны из барабанной кожи с сигнальным рожком для усиления звука был сделан. Этот аппарат стал родоначальником всех телефонных аппаратов.

Тем не менее, А. Г. Беллу и другим инженерам в разных странах, в том числе и в России, пришлось еще очень много работать, чтобы телефонная связь приобрела современный облик.

ЛЕОНАРДО ДА ВИНЧИ (1452–1519)

Леонардо да Винчи - великий итальянский ученый, инженер, художник, скульптор, музыкант. Он далеко опередил свое время, проектируя и изобретая машины и сооружения, не получившие воплощения при его жизни. Его называют одним из самых могучих умов человечества. Его прекрасные картины и фрески пережили века и остались непревзойденными. К сожалению, от реальных машин, которые он создал, ничего не осталось, но многие инженерные замыслы сохранились в рисунках и чертежах. Большая часть идей Леонардо вообще не могла быть осуществлена в Италии XV века. В одной из рукописей есть рисунок вертолета. Приписка гласит: «Если этот аппарат правильно построить, то при быстром вращении винта он поднимется в воздух». Эта идея была осуществлена лишь в ХХ веке. Много занимался Леонардо да Винчи и оружием. Он первым сконструировал паровую пушку, первым нарисовал орудие с винтовым затвором, заряжаемое сзади; занимался многоствольным и многозарядным огнестрельным оружием. На одном из его рисунков показана батарея, расположенная на тележке-станке таким образом, что из тридцати трех стволов стрелять можно из одиннадцати. Затем Леонардо сконструировал и более тяжелое орудие, действующее по тому же принципу: в каждом из 8 рядов располагалось по 9 стволов, то есть после зарядки можно было выстрелить 72 снарядами.

Леонардо да Винчи оставил проект большой машины для подъема и транспортировки грунта, вынутого из канала, - прообраз современных землеройных машин и драг. Он изобрел 15-шпиндельный ткацкий станок, приводимый в движение руками ремесленников. Сохранились рисунки лебедки в собранном и разобранном виде. Колеса, диски, шестерни - все детали изображены очень точно. Видно, что ученый в то время работал над проблемой преобразования вращательного движения в поступательное. О разносторонности технических поисков Леонардо да Винчи говорят многие факты. Так, он спроектировал конюшню с механической подачей кормов, которая во многих деталях могла бы перейти из XV века в наше время, изобрел анемометр - устройство для подсчета скорости ветра, который пытались установить на каретах, чтобы по скорости набегавшего воздуха определять, насколько быстро карета движется.

Одним из его грандиозных замыслов был проект моста через Босфор. Турецкий султан отверг предложение гениального инженера. Лишь в ХХ веке мост через Босфор был построен. В музеях Италии можно увидеть действующие модели станков Леонардо да Винчи, тележку, приводимую в движение пружинами, макет вертолета.

Однажды швейцарский ученый сделал модель моста точно по чертежам Леонардо. Проект оказался настолько безупречным, что его можно было осуществлять даже при средневековом уровне техники.

Гениальный изобретатель продолжал творить до последнего часа жизни, хотя и понимал, что осуществить его идеи в современном ему мире невозможно. Леонардо изобрел вычислительную машину, построенную по его эскизу и заработавшую через 500 лет.

ГЕРОН АЛЕКСАНДРИЙСКИЙ (I в. до н. э.)

К сожалению, не сохранились даты рождения и смерти этого изобретателя и выдающегося ученого античного мира. Предполагают, что он работал в I в. до н. э. в Александрии. Только спустя 2000 лет были найдены и переведены на современные европейские языки арабские списки его трудов. Далекие потомки узнали, что ему принадлежат формулы определения площади различных геометрических фигур. Стало известно, что Герон описал прибор диоптр, который с полным основанием можно назвать прапрадедом современного теодолита. Без этого прибора в наше время не могут обойтись строители, геодезисты, горняки. Он впервые исследовал пять типов простейших машин: рычаг, ворот, клин, винт и блок. Герон заложил основы автоматики. В своем труде «Пневматика» он описал ряд «волшебных фокусов», основанных на принципах использования тепла, перепада давлений. Люди удивлялись чудесам, когда двери храма сами открывались, когда над жертвенником зажигался огонь. Он изобрел автомат для продажи святой воды, сконструировал шар, вращаемый силой струй пара.

РОБЕРТ ГОДДАРД (1882–1945)

Роберт Хачинз Годдард является одним из первых изобретателей и конструкторов ракетной техники. С его именем связано начало практических работ в этой области. Он родился в 1882 году в Вустере (США). Из-за болезни он не мог регулярно посещать школу и рано приобщился к самостоятельному изучению научной литературы. Под влиянием научно-фантастических книг Роберт увлекся мечтой о достижении внеземных миров и всю свою жизнь посвятил тому, чтобы превратить фантазию в реальность.

Закончив политехнический институт, Р. Годдард начинает практическую деятельность и через пять лет, в 1913 году, начинает подавать первые заявки на изобретение ракетных аппаратов, предназначенных для подъема на большую высоту. Затем он проводит эксперименты, подтверждающие возможность получения сверхзвуковой скорости ракетной струи при сжигании бездымного пороха в камере с соплом, и начинает строить модель пороховой ракеты. Построить высотную пороховую ракету не удалось и в 1921 году Роберт Годдард начал эксперименты с жидким ракетным топливом.

Через четыре года, зимой 1925 года при статическом испытании опытной ракеты жидкостный ракетный двигатель впервые развил тягу, превышающую весь ракеты, а через несколько месяцев был произведен первый пуск жидкостной ракеты. Над созданием ракет Роберт Годдард работал до конца 1941 года. Он и его группа впервые осуществили на практике ряд идей, нашедших впоследствии широкое применение в ракетной и космической технике. В 1945 году изобретатель скончался. Его смерть не привлекла особого внимания. И лишь спустя долгие годы к Роберту Годдарду пришла слава и его деятельность в области ракетной техники и космонавтики получили должное признание.

ИОГАНН ГУТЕНБЕРГ (Ум. в 1468)

Немецкий изобретатель Гутенберг родился в городе Майнце около 1400 г. За свою жизнь он создал европейский способ книгопечатания, первую типографию, печатный станок. Из-за междоусобиц между бюргерами Гутенбергам пришлось бежать в Страсбург.

В XI в. в Китае, Тибете был известен способ печатания с деревянных досок, на которых гравировались целые страницы рукописи. В Европе этот способ назвали «ксилографией». Студент Страсбургского университета Иоганн Гутенберг вместе с несколькими компаньонами занялся изготовлением ксилографических книг. Затем ему пришла идея гравировать не целые страницы сразу, с каждой из которых можно было снять не так уж много качественных оттисков, а делать отдельные буквы и потом из них, как из кубиков, складывать строки. Для реализации идеи он придумал следующий способ изготовления шрифта: сначала на торце металлического бруска - пуансона - гравировали обратное выпуклое изображение буквы, потом выбивали ее на мягкой медной пластке, которая служила матрицей. Затем эту пластинку-матрицу вставляли в нижнюю часть полой трубки, а через открытый верх заливали специальный сплав - гарт. В результате этой операции можно было создать множество точных копий пуансона - литер, из которых потом строка за строкой набиралась книга.

На изготовление литер ушло много времени и денег. Только на пятом десятке лет жизни Гутенберг сумел изготовить нужное количество литер - первую наборную кассу - и сделать печатный станок. Но денег не хватило. Пришлось брать в долг. За неуплату в срок долга на Гутенберга подали в суд и отобрали и шрифты, и типографию. Однако несколько прекрасных книг Иоганн Гутенберг успел создать и подарить человечеству.

РОБЕРТ ГУК (1635–1703)

Роберт Гук - сын провинциального священника, с детства увлекался устройствами всякого рода механизмов и рисованием. После завершения обучения в Вестминстерской школе в 1653 году он переехал в Оксфорд и поступил на работу в церковь в качестве певчего. Одновременно занимался в Оксфордском университете, специализируясь в области астрономии, и стал ассистентом Р. Бойля. Страсть к изобретательству, оригинальность мышления в сочетании с романтической увлеченностью и буйной фантазией позволили Гуку сделать множество открытий в самых разных областях знания. Гук сконструировал прибор для измерения силы ветра, приспособление для деления круга, ряд приборов для исследования морского дна, ареометр, проекционный фонарь, дождемер, пружинные часы. Он изобрел карданную передачу и систему зубчатых колес, которые теперь известны как уайтовы колеса. Он усовершенствовал зрительную трубу для измерения углов, телескоп, микроскоп, барометр. Немало и других приборов, механизмов, приспособлений создал талантливый механик Роберт Гук.

Гука заслуженно признавали хорошим архитектором. После пожара в Лондоне в 1666 году он создал проект восстановления и реконструкции города, а затем по поручению магистрата возглавил эти работы. По его проектам в Лондоне был построен ряд зданий, церквей и жилых домов. Самым значительным сооружением была известная больница Бедлам, которая считалась гордостью лондонцев. Построенное в 1247 году, восстановленное по проекту Гука это огромных размеров здание поражало гармонией пропорций, классической строгостью форм. В годы работы в Королевском обществе Гук значительно обогащает всю деятельность этого учреждения, становясь вскоре его секретарем. Он издает труды Общества, следит за иностранными изобретениями, делает собственные изобретения, продолжает ставить эксперименты, сопровождая их такими гениальными идеями, которые нередко приводили к большим открытиям других.

Его классический труд «Микрография» был издан в 1665 году. Он был посвящен физической оптике и микроскопии. В эту работу вошли, в частности, результаты изучения Гуком клеточного строения растений. Он впервые ввел термин «клетка» и дал описание клеток целого ряда растений. Гук занимался волновой теорией света, провел глубокое исследование цветов тонких пластинок, описал явления дифракции и ряд других световых явлений. Вместе с Гюйгенсом Гук установил постоянные температурные точки - таяния льда и кипения воды - и сконструировал термометр. Одной из наиболее значительных его работ была теория движения и взаимодействия небесных тел.

В мае 1666 года Роберт Гук сделал доклад в Королевском обществе, в котором сказал, что намерен изложить систему мира, весьма отличающуюся от всех до сих пор предложенных; основывается она на следующих положениях. Далее следовали три положения Гука.

В первом положении говорилось о том, что все небесные тела не только обладают тяготением своих частей к их собственному общему центру, но притягиваются взаимно одно к другому внутри их сфер действия. Во втором излагалось следующее: «Все тела, совершая простое движение, будут продолжать двигаться по прямой линии, если только они не будут постоянно отклоняться от нее некоторой внешней силой, побуждающей их описывать окружность, эллипс или какую-нибудь кривую.». В третьем положении говорилось: «Это притяжение тем больше, чем тела ближе. Что же касается отношения, в котором эти силы уменьшаются с увеличением расстояния, то я сам не определил его, хотя и проделал с этой целью некоторые эксперименты». Через восемь лет Р. Гук продолжил эту тему, написав работу «Попытка доказательства годичного движения на основе наблюдения». Таким образом, Гук в основном предвосхитил закон всемирного тяготения, открытый Исааком Ньютоном. Гук проводил много опытов с металлическими пружинами и деревянными балками. Изготовив консольную балку из дерева, он измерял ее прогиб под действием в различных частях разных весов. При этом он пришел к важному выводу о том, что на выпуклой поверхности балки волокна при изгибе растягиваются, а на вогнутой - сжимаются. Прошло очень много времени пока техникам, механикам и инженерам стало ясно значение, как теперь представляется, очевидного свойства материала. Деформация пропорциональна нагрузке; и наоборот.

В 1678 году вышла работа Гука «О восстановительной способности или об упругости». Она содержала описание опытов с упругими телами - первая книга по теории упругости. Независимо от вида нагрузки - растяжения или сжатия - изменение размеров тела пропорционально приложенной силе. Для проверки этого положения Гук предлагал к проволоками разных длин привешивать гири и измерять удлинение. Сравнивая изменения нескольких проволок в зависимости от приложенного к ним веса, можно убедиться, «что они всегда будут относиться друг к другу как вызвавшие их нагрузки».

РУДОЛЬФ ДИЗЕЛЬ (1858–1913)

В истории техники известны имена таких изобретателей, как Т.А. Эдисон, Н. Тесла, В.Г. Шухов, которые подарили миру сотни идей и решений. У немецкого изобретателя Рудольфа Дизеля было одно детище, но без него в наше время был бы невозможен мир машин. Он изобрел двигатель внутреннего сгорания с воспламенением от сжатия. Двигатель носит имя своего создателя.

Когда Р. Дизель учился в Мюнхенской политехнической школе, он мечтал о том, как повысить коэффициэнт полезного действия паровой машины, который в то время находился на уровне 10 %. Эта идея не оставляла его и после того, как Р. Дизель стал инженером. Долгий мучительный труд увенчался успехом. В 1982 году он получил патент на изобретенный им четырехтактный двигатель внутреннего сгорания.

Изобретатель установил, что коэффициэнт полезного действия двигателя внутреннего сгорания повышается от увеличения степени сжатия горючей смеси. Однако опыты показали, что слишком сильно сжимать горючую смесь нельзя, так как от сжатия она перегревается и вспыхивает раньше времени.

Тогда Дизель решил сжимать не горючую смесь, а чистый воздух. К концу сжатия, когда температура достигала почти 650 градусов Цельсия, в цилиндр под сильным давлением впрыскивалось жидкое топливо, которое немедленно воспламенялось, и газы, расширяясь, двигали поршень. Таким образом изобретателю удалось значительно повысить коэффициент полезного действия двигателя. К тому же здесь не нужна была система зажигания. Двигатель Дизель очень экономичный, он работает на дешевых видах топлива. Впервые такой двигатель был построен в 1897 году.

В наши дни, усовершенствованное изобретение, успешно работает, приводя в действие автомобили, суда, тракторы, тепловозы и т. д.

ИГОРЬ ВАСИЛЬЕВИЧ КУРЧАТОВ (1903–1960)

Игорь Васильевич Курчатов является крупнейшим советским ученым, академиком, трижды Героем Социалистического Труда, лауреатом Ленинской и Государственных премий, выдающимся организатором и научным руководителем работ, связанных с атомной техникой. Родился он на Южном Урале в небольшом селе Сим, недалеко от Уфы в семье помощника лесничего. Позднее семья Курчатовых переехала в Симбирск, а в 1912 г. в Крым.

В Крыму Игорь с золотой медалью закончил Симферопольскую гимназию и поступил в университет. Это было начало 20-х годов, период послевоенной разрухи, голода. Студенту физико-математического факультета приходилось подрабатывать воспитателем в детском саду, сторожем, пильщиком дров. В университете И.В. Курчатова считают талантливым математиком, а он убежден, что целью его жизни является строительство кораблей. Он досрочно заканчивает университет, едет в Петроград и поступает на 3-й курс судостроительного факультета Политехнического института.

Жилось в Петрограде очень нелегко. И.В. Курчатов ради заработка пошел наблюдателем в Павловскую магнитно-метеорологическую обсерваторию и в первый же год выполнил серьезную научную работу по исследованию радиоактивности снега. Это первое знакомство с физикой атома и снова смена направления.

В то время одним из главных направлений была энергетика. Курчатов вместе с группой молодых ученых берется за решение проблем высоковольтной изоляции. Он исследует диэлектрики и открывает новую область науки - учение о сегнетоэлектричестве. И.В. Курчатову присвоили ученую степень доктора физико-математических наук, когда ему еще не было тридцати лет. Ему предлагали заняться разработкой новой науки, но он начинает работы в области ядерной физики.

Во время войны он выполняет срочные военные заданий. После войны Курчатов становится во главе исследований в области ядерной физики и организации новой отрасли промышленности - атомной. Управлял огромными коллективами, Кучатов решает важнейшие для страны оборонные задачи, создавая атомное оружие. Затем он переключается на работу по созданию атомной станции. 27 июня 1954 года первая атомная станция вступила в строй. Затем выдающимся ученым был построен первый в мире атомный ледокол. Его жизнь оборвалась в расцвете сил. Дело его продолжают тысячи учеников.

НИКОЛАЙ ЕГОРОВИЧ ЖУКОВСКИЙ (1847–1921)

Выдающийся русский ученый Николай Егорович Жуковский является создателем аэродинамики как науки. Он говорил, что человек не имеет крыльев и по отношению веса своего тела к весу мускулов в 72 раза слабее птицы…Но есть уверенность, что он полетит, опираясь не на силу своих мускулов, а на силу своего разума. Жуковский стал родоначальником науки, которая помогает конструировать самолеты, делать их надежными, быстроходными.

В юности Николай Жуковский мечтал стать инженером-путейцем. Но для этого нужно было ехать в Петербург, а родители не могли содержать сына в другом городе. В Москве Н.Е. Жуковский поступил в Московский университет на физико-математический факультет. После окончания университета, думая о своей будущей профессии, он сделал попытку получить образование в Петербургском институте путей сообщения, однако попытка не удалась. Он получил диплом инженера, но гораздо позднее. В январе 1911 года, к 40-летию научной и педагогической деятельности Н.Е. Жуковского, МВТУ вручило ему почетный диплом инженера-механика.

Чем глубже Жуковский осваивал профессию, тем яснее понимал, как много неизвестного в механике, и в математике. Его талант расцвел в Московском высшем техническом училище, где он стал профессором кафедры аналитической механики. Здесь он создал аэродинамическую лабораторию, воспитал ряд знаменитых впоследствии конструкторов самолетов, двигателей, теоретиков авиации. В области аэродинамики и авиации работы Жуковского явились источником основных идей, на которых строится авиационная наука.

Н.Е. Жуковский тщательно и всесторонне исследовал динамику полета птиц, теоретически предсказал ряд возможных траекторий полета, в частности «мертвую петлю». В 1904 году он открыл закон, определяющий подъемную силу крыла самолета, определил наивыгоднейшие профили крыльев и лопастей винта самолета, разработал вихревую теорию воздушного винта и т. д.

В дальнейшем по его инициативе были созданы знаменитый ЦАГИ (Центральный аэрогидродинамический институт), Военно-воздушная инженерная академия, ныне носящая его имя.

СЕРГЕЙ ВЛАДИМИРОВИЧ ИЛЬЮШИН (1894–1977)

Сергей Владимирович Ильюшин - выдающийся советский авиаконструктор. Его первое знакомство с авиацией произошло, когда он рабочим занимался расчисткой и выравниванием летного поля.

Его энергия и стремление к знаниям и талант были удивительны. Он самостоятельно изучил математику, физику, химию, что помогло ему стать бортмехаником. Но Ильюшин мечтал летать. В 1917 году он успешно сдал экзамены на звание пилота. После гражданской войны его направляют на учебу в Московский институт инженеров Красного воздушного флота (впоследствии Военно-воздушная инженерная академия имени Н. Е. Жуковского), где Ильюшин не только успешно учился, но и строил планеры. В 1926 году он закончил академию, затем создал и возглавил одно из конструкторских бюро.

В 1933 году коллектив Ильюшина разрабатывает двухмоторный самолет, на котором летчик-испытатель В. К. Коккинаки устанавливает ряд рекордов высоты с различными грузами. В 1938–1939 годах на самолетах Ильюшина совершены беспосадочные перелеты Москва - Владивосток, Москва - Северная Америка. Прославились и дальние бомбардировщики. В ночь на 8 августа 1941 года группа дальних бомбардировщиков Ил-4 совершила налет на военные объекты Берлина.

Вскоре С. В. Ильюшин создал самолет, который наши воины называли «летающий танк», а фашисты - «черная смерть». Это был знаменитый штурмовик Ил-2, который с бреющего полета мог расстреливать танки «Тигр».

В 1944 году коллектив ОКБ Ильюшина начинает создавать реактивные самолеты, а через десять лет совершил свой первый полет пассажирский полет Ил-18. Это был новый шаг в развитии советского самолетостроения. Затем Ильюшин создает современный межконтинентальный лайнер Ил-62, в котором были воплощены лучшие технические достижения своего времени.

Академик, генерал-полковник-инженер С. В. Ильюшин был трижды Героем Социалистического Труда.

ИОГАНН КЕПЛЕР (1561–1630)

Иоганн Кеплер - немецкий астроном. Установил законы движения планет. Заложил основы теории затмений. Изобрел одну из разновидностей телескопа - трубу Кеплера, которая широко употреблялась впоследствии. Его математические способности нашли применение и в решении «земных» задач, например, в расчете формы винных бочек.

НИКОЛАЙ ИВАНОВИЧ КИБАЛЬЧИЧ (1853–1881)

Николай Иванович Кибальчич был известным революционером, а также одним из пионеров ракетной техники и изобретателем. Он был приговорен к смертной казни вместе с другими участниками покушения на царя Александра II.

Весной 1881 года в тюрьме он передал своему адвокату рукопись, написанную в тюрьме «Проект воздухоплавательного прибора», в которой писал, что движущей силой воздухоплавательных аппаратов должна стать реактивная сила газов, возникающая в результате сгорания взрывчатых веществ. Он предложил создать совершенно новый (ракетодинамический), прообраз современных пилотируемых ракет.

В проекте Кибальчич рассмотрел устройство порохового двигателя, предложил управлять ракетой путем изменения угла наклона двигателя, разработал систему устойчивости аппарата. Он просил организовать встречу с каким-либо ученым - специалистом или передать его «Проект» на экспертизу. Просьба осталась без ответа. Только через 40 лет стало известно об изобретении и научном подвиге этого изобретателя.

Очень высоко оценил научный подвиг Н.И. Кибальчича К.Э Циолковский, поставив его на первое место среди своих предшественников. Есть свидетельство, что именно с проекта Кибальчича начал свое знакомство с ракетной техникой выдающийся конструктор космических кораблей С.П. Королев.

СЕРГЕЙ ПАВЛОВИЧ КОРОЛЕВ (1907–1966)

Сергей Павлович Королев является конструктором первых ракетно-космических систем. Он родился на Украине, в г. Житомир, в семье учителя. После окончания двухгодичной профессиональной школы в Одессе, С.П. Королев стал строителем - крыл черепицей крыши, столярничал. В 1924 году поступил в Киевский политехнический и после окончания второго курса перевелся в Московское высшее техническое училище на факультет аэромеханики. Руководителем на его дипломном проекте был А.Н. Туполев.

В 1929 году С.П. Королев окончил училище, а на следующий год - школу летчиков-планеристов. Однако авиация не стала его призванием. После того, как он прочел труды К. Э. Циолковского, решил строить ракеты и в 1932 году возглавил Группу изучения реактивного движения (ГИРД). Он руководил запусками первых советских ракет и полностью отдал себя новой области знаний - ракетостроению.

С.П. Королев создает первый ракетный планер, первую крылатую ракету, а в тяжелые годы войны лично проводит испытания ракетных ускорителей на серийных боевых самолетах. После войны С.П. Королев руководил созданием ракет дальнего действия, а в 1957 была испытана многоступенчатая межконтинентальная ракета.

4 октября 1957 года с помощью ракеты, созданной под руководством Королева, был выведен на орбиту первый искусственный спутник Земли. Под руководством С.П. Королева были построены первые пилотируемые космические корабли, отработана аппаратура для полета человека в космос, для выхода из корабля в свободное пространство и возвращения космического аппарата на Землю, созданы искусственные спутники Земли серии «Электрон» и «Молния-1», многие спутники серии «Космос», первые экземпляры межпланетных разведчиков серии «Зонд». Он первым послал космические аппараты к Луне, Венере, Марсу и Солнцу.

С именем лауреата Ленинской премии, дважды Героя Социалистического Труда академика С.П. Королева связано одно из величайших завоеваний науки и техники всех времен - открытие эры освоение человечеством космоса.

АЛЕКСАНДР НИКОЛАЕВИЧ ЛОДЫГИН (1847–1923)

Замечательный русский изобретатель Александр Николаевич Лодыгин сумел преодолеть первую, самую трудную часть пути к созданию электрической лампочки. Он попытался в качестве нити накаливания использовать железную проволоку. Однако этот опыт оказался неудачным. Заменивший ее угольный стерженек на воздухе быстро перегорал. Наконец в 1872 году Лодыгин поместил угольный стерженек в стеклянный баллон, из которого даже не выкачивал воздух. Кислород выгорал, как только уголек накалялся, и дальнейшее свечение происходило в инертной атмосфере. Опыты продолжались. Через год была получена новая, более совершенная конструкция.

В новой конструкции находились два стерженька. Один горел первые тридцать минут и выжигал в баллоне кислород, а второй светил еще два с половиной часа. В Петербурге такими лампами была осветили улицу. В 1872 году А.Н. Лодыгин подал заявку на изобретение лампы накаливания и через два года, в 1874 году, получил патент. Петербургская академия наук присудила ему Ломоносовскую премию.

Через несколько лет А.Н. Лодыгин реализовал свою новую идею о применении тепла электричества для плавки металла. Для этого пришлось уехать во Францию, и США, где он построил ряд крупных электропечей. Однако он понимал несовершенство ламп накаливания и, вернувшись к этой проблеме, после кропотливых опытов предложил использовать вольфрам - единственный металл, из которого производятся нити электрических лампочек в наши дни.

МИХАИЛ ВАСИЛЬЕВИЧ ЛОМОНОСОВ (1711–1765)

Михаил Васильевич Ломоносов - российский ученый-естествоиспытатель, поэт, художник, историк, первый русский академик, основатель Московского университета. Разработал конструкции около ста приборов, в том числе телескоп. Опубликовал руководство по металлургии. Создал первую в России химическую лабораторию. Настаивал на введении точных методов в практику горного дела, металлургии, геологии. Многие идеи Ломоносова опередили науку его времени на сто лет. М. В. Ломоносов проник в тайны строения вещества. Он впервые разграничил понятие «корпускула» (молекула) и элемент (атом). Лишь в середине XIX века это его предвидение нашло окончательное признание. До Ломоносова не могли объяснить причины тепла и холода. Ломоносов научно доказал, что тепло возникает в результате движения молекул и зависит от скорости их хаотического движения. Он впервые искусственным путем получил холод, при котором замерзла ртуть, и предсказал существование абсолютного нуля. Ломоносову принадлежит заслуга открытия одного из фундаментальных законов природы - закона сохранения материи и движения. Рядом опытов он доказал неизменность общей массы вещества при химических превращениях. Так Ломоносов в России, а позднее Лавуазье во Франции завершили процесс превращения химии в строгую количественную науку.

В его научной и экспериментальной работы большое место занимала оптика. Он сам изготовлял оптические приборы, инструменты и т. д. Наблюдая прохождение Венеры перед солнечным диском, открыл у этой планеты атмосферу. Лишь в XIX веке смогли повторить этот его опыт. Исследуя небо с помощью своих приборов, Ломоносов отстаивал идею бесконечности Вселенной, множества миров в ее глубинах. Он был замечательным географом, как бы заглянувшим на два века вперед, так как предугадал значение Северного морского пути.

Для Ломоносова были неразделимы наука, техника, искусство. Он занимался изготовлением цветных стекол, сам выполнил тысячи плавок и создал несколько замечательных мозаичных картин. Он был прекрасным поэтом и в стихах, так же как и в теоретических статьях, излагал свои пророческие идеи и философские взгляды.

АНДРЕЙ КОНСТАНТИНОВИЧ НАРТОВ (1693–1756)

Суппорт - деталь, закрепляющая и направляющая резец, является важнейшей частью любого токарного станка. В Санкт-Петербурге и Париже до наших дней хранятся станки русского ученого, механика и скульптора Андрея Константиновича Нартова - современника и соратника М.В. Ломоносова.

Его станки являются свидетельсвом выдающегося изобретения XVIII века, положившего начало быстрому развитию машиностроения. Нартов был механиком Петра I и учителем токарного дела. Он был одним из тех выдающихся изобретателей, которые прокладывали пути перехода от ручной техники к машинной. Нартов воспитал много знатоков токарного дела, а сам стал созидателем самых разнообразных станков, опередившим техническую мысль Европы более чем на полвека.

Он ввел машины на Монетном дворе, придумал подъемники для извлечения отливок из литейных ям, механизм для подъема Царь-колокола, станки для изготовления орудий, изобрел скорострельную батарею из 44 мортирок, укрепленных на горизонтальном поворотном круге. Когда одни мортирки стреляют, другие заряжаются.

В 1742–1743 гг. А.Н. Нартов руководил Академией наук и художеств.

ДЕНИ ПАПЕН (1647–1712)

В 16 лет Дени Папен стал студентом одного из университетов Франции. Он изучил медицину, получил степень доктора и отправился в Париж. Возможно, он так бы и остался врачом, если бы не встреча с голландским физиком Х. Гюйгенсом. Врач стал изучать физику и механику. В конце XVII века многие изобретатели пытались создать двигатель, который превращал бы тепловую энергию в работу. Занялся этим и Папен. Итак, цилиндр и в нем поршень. Если под поршнем создать разрежение, то столб воздуха заставит его двигаться вниз, производить механическую работу. Но как добиться пустоты под поршнем? Папен попробовал создавать разрежение под поршнем при помощи взрывов пороха, но ничего не добился. Затем использовал пар. Теперь вместо пороха под поршнем была вода. Папен подогревал цилиндр - давление пара гнало поршень вверх; отодвигал горелку - цилиндр остывал, пар конденсировался и поршень шел вниз. А в это время груз, подвешенный на веревке, перекинутой через блок, поднимался. Паровой двигатель Папена созданный в 1680 году совершал полезную работу. Это был один из первых настоящих паровых котлов. Но не только паровой двигатель был предметом многолетнего поиска Папена. Он предложил конструкцию центробежного насоса, сконструировал печь для плавки стекла, паровую повозку, изобрел несколько машин для подъема воды. Однако большинство технических идей Дени Папена реализованы не были.

БЛЕЗ ПАСКАЛЬ (1623–1662)

Блез Паскаль - французский математик, физик и филосов. Изложил метод решения задач на вычисление площадей фигур и объемов тел. Установил основной закон гидростатики - науки о равновесии жидкостей - и принцип действия гидравлического пресса. Изобрел счетную машину, манометр, тачку и омнибус - многоместную конную карету.

ЕВГЕНИЙ ОСКАРОВИЧ ПАТОН (1870–1953)

Через Днепр в Киеве перекинут красавец мост длиной 1150 метров. Во всей этой металлической громаде нет ни одной заклепки. Он цельносварной. В этом творении Е.О. Патона как бы слились воедино два дела, которым он посвятил свою жизнь: мостостроение и сварка. Евгений Оскарович Патон - выдающийся инженер, ученый, академик, Герой Социалистического Труда - родился в семье русского консула в Ницце (Франция), окончил политехнический институт в Германии. Но, вернувшись в Петербург известным инженером-строителем, автором проекта Дрезденского вокзала, Патон вновь поступил учиться, и спустя год, сдав все экзамены, получил диплом инженера путей сообщения, стал выдающимся специалистом по сооружению железнодорожных мостов, положившим начало школе мостостроения. В 60 лет он берется за совершенно новое дело - электросварку и становится организатором первого в мире Института электросварки. В институте разрабатываются новые методы проектирования, расчетов и возведения сварных конструкций. В возрасте 70 лет он изобрел новый способ сварки под слоем флюса. В наши дни тысячи километров газопроводов свариваются знаменитым методом Патона. В 80 лет он руководит проектированием и строительством первого цельносварного моста, который был назван его именем.

ОГЮСТ ПИККАР (1884–1962)

Ученый-физик, изобретатель и конструктор Огюст Пиккар сделал первый шаг на пути к раскрытию тайны космических лучей. Проблема космических лучей увлекала его давно. Он знал, что чем выше над поверхностью Земли, тем интенсивнее поток лучей, и решил сам подняться в стратосферу с приборами, регистрирующими лучи. Приборов-автоматов в первой четверти ХХ века еще не было.

О. Пиккар рассчитал и построил герметичную шарообразную гондолу, рассчитал оболочку, которая должна была вместить почти 14 тыс. куб. метров газа. В 1932 году и в 1933-м он поднимался на стратостате собственной конструкции и достиг высоты 16370 м. Стратостат помог ученому проследить направленность космических лучей, измерить степень поглощения их слоем парафина и свинца, сравнить интенсивность излучения на разных высотах. Так был сделан первый шаг к раскрытию тайны космических лучей.

Еще одним важным увлечением Пиккара была идея покорения глубин. Для этой цели в 1937 году он начинает конструировать первый батискаф - автономный аппарат для глубоководных погружений. Но началась война и работу пришлось прервать. Вернулся к ней Пиккар в 1948 году. Батискаф был сделан в виде металлического поплавка, заполненного бензином, потому что бензин легче воды, практически не поддается сжатию и оболочка поплавка под влиянием огромных давлений не деформируется.

Снизу к поплавку подвешена шарообразная гондола из прочнейшей стали и балласт. Дважды Пиккар успешно погружался на морское дно - в 1948 и в 1953 годах. Его батискафы могли опускаться на любую глубину. В январе 1960 года сын Огюста Пиккара на батискафе «Триест» достиг самой глубокой точки Тихого океана - Марианской впадины (10912 м).

ИВАН ИВАНОВИЧ ПОЛЗУНОВ (1728–1766)

Иван Иванович Ползунов - гениальный русский изобретатель-самоучка, один из создателей теплового двигателя и первой в России паровой машины. Сын солдата, он в 1742 году окончил первую русскую горнозаводскую школу в Екатеринбурге, после чего был учеником у главного механика уральских заводов. Насколько работящим, любознательным и талантливым был Иван, говорит тот факт, что двадцатилетнего молодого человека отправили в числе специалистов горнозаводского дела на Колывано-Воскресенские заводы Алтая, где добывались драгоценные металлы для царской казны. С 1748 года Иван Ползунов работал в Барнауле техником по учету выплавки металла, в 33 года был уже одним из руководителей завода. В то время на заводах процветал тяжелый ручной труд. Лишь воздуходувные меха и молоты для ковки металла приводились в движение силой воды. Поэтому заводы строились на берегах рек и производство зависело от капризов погоды. Стоило обмелеть заводскому пруду, как производство останавливалось. Иван Ползунов поставил перед собой задачу по тому времени невиданной смелости - ручной труд и водяной двигатель заменить «огненной машиной». Он разработал чертежи двухцилиндровой паровой машины. Одновременно с разработкой чертежей ему пришлось создавать инструменты и токарные станки с водяными двигателями для обработки металла, учить мастеровых и строить машину. И в таких условиях все детали паровой машины были изготовлены всего за 13 месяцев. Некоторые из них весили до 2720 кг. Машина была собрана. Но увидеть ее в работе Ползунову не пришлось - он умер, сломленный непосильным трудом и болезнью в мае 1766 года, а его детище было пущено в эксплуатацию 7 августа. Всего за два месяца паровая машина не только окупила себя, но и дала большую прибыль. Обращались с машиной хозяева варварски. В ноябре по недосмотру началась течь котла. Вместо того, чтобы его отремонтировать, машину остановили навсегда, а через несколько лет разобрали. Дело Ползунова на десятки лет было предано забвению, и лишь через двести лет имя гениального изобретателя и техника было заново вписано в историю российской техники.

АЛЕКСАНДР СТЕПАНОВИЧ ПОПОВ (1859–1906)

Александр Степанович Попов родился в 1859 году на Урале в семье священника. Сначала он учился в начальном духовном училище, а потом в духовной семинарии, где детей духовенства обучали бесплатно. Учился хорошо, был любознательным и любил мастерить игрушки и разные простые технические устройства. Эти навыки ему очень пригодились, когда пришлось самому изготавливать приборы для своих исследований.

После окончания Пермской духовной семинарии Александр поступил на физико-математический факультет Петербургского университета, где его особенно привлекали проблемы новейшей физики и электротехники.

После окончания в 1882 году университета А.С. Попов работает преподавателем в Минном офицерском классе в Кронштадте. В свободное время он делает физические опыты и изучает электромагнитные колебания, открытые Г. Герцем. В результате многочисленных опытов и тщательных исследований Попов пришел к изобретению радиосвязи.

Он построил первый в мире радиоприемник. В качестве источника электромагнитных колебаний Попов пользовался вибратором Герца. 7 мая 1895 года А. С. Попов сделал доклад на заседании Русского физико-химического общества в Петербурге и продемонстрировал в действии свои приборы связи. Это был день рождения радио.

Совершенствованию своего изобретения Попов посвятил много сил и времени. Сначала передача велась всего на несколько десятков метров, потом на несколько километров, потом на десятки километров. В конце 1899 - начале 1900 годов приборы радиосвязи Попова выдержали серьезный экзамен: их успешно применили при спасении броненосца. Незадолго до этого Попов построил приемник нового типа, который принимал телеграфные сигналы на наушник на расстоянии 45 км.

В 1901 году А. С. Попов стал профессором Петербургского электротехнического института, а затем и его директором. Жизнь ученого, гений которого подарил человечеству радио, оборвалась неожиданно. В январе 1906 года он скоропостижно скончался.

УИЛБЕР РАЙТ (1867–1912), ОРВИЛЛ РАЙТ (1871–1948)

Американские изобретатели, авиаконструкторы и летчики братья Уилбер и Орвилл Райт первыми совершили полет на построенном ими же самолете. Изобретательством и техникой они увлекались с детства. Так, в 13 лет Орвилл смастерил типографский станок, а 17-летний Уилбер его усовершенствовал. В 1982 братья стали владельцами небольшой типографии, а затем мастерской по ремонту велосипедов. Они мечтали о полете на управляемой машине тяжелее воздуха.

Узнав о гибели Отто Лилиенталя, немецкого изобретателя, строителя планеров, они решили создать летательный аппарат, несмотря на то, что опыты, проводимые ими на планерах собственной конструкции тоже всегда были связаны с риском. Братья разработали систему горизонтального управления полетов, затем начались поиски двигателя. Много трудов им пришлось положить на создание воздушного винта. Теория его создания была разработана Н. Е. Жуковским только через 10 лет.

В декабре 1903 года аэроплан, созданный братьями Райт, впервые поднялся в воздух. Полет продолжался 59 с. Братья переживали гордость победы и знали, что, созданная ими летательная машина была одним из величайших даров, который когда-либо приносил человек человеку. Мечта их сбылась. Они совершили первый полет на летательном аппарате тяжелее воздуха.

В 1912 году умер Уилбер Райт. Орвилл пережил его на 36 лет, но самолетов больше не строил.

БОРИС ЛЬВОВИЧ РОЗИНГ (1869–1933)

Весной 1869 года в семье петербургского чиновника Л.Н. Розинга родился сын Борис - будущий изобретатель телевидения.

Маленький Борис был живым и любознательным, успешно учился, увлекался музыкой и литературой. Однако, будущее его оказалось связанным не с гуманитарными науками, а с точными.

Окончив физико-математический факультет Петербургского университета Борис Львович Розинг увлекся идеей передачи изображения на расстояние. После ряда исследований он приходит к выводу, что осуществить передачу изображения удастся только с помощью элекроннолучевой трубки, известной в качестве прибора с конца XIX века, а также посредством использования явления внешнего фотоэффекта, открытого А.Г. Столетовым. Множество поставленных опытов, беспокойные творческие раздумья предшествовали тому моменту, когда Л.Б. Розинг решился публично объявить о своих исследованиях и методе «электрической передачи изображений».

В 1907 году в России он получил патент на этот метод, закрепивший за ним право первенства. В качестве преобразователя светового изображения в электрические токи им был применен фотоэлемент. Оптическая система, подобная фотографической, и вращающиеся зеркала позволяли последовательно, строчка за строчкой развертывать изображение, то есть как бы последовательно построчно осматривать его, преобразуя изменения яркости изображения в электрические прерывистые токи, которые далее поступали на электроннолучевую трубку Брауна, заставляя с помощью особого электрода-модулятора светиться с различной яркостью ее экран.

Данный текст является ознакомительным фрагментом. Из книги 100 великих загадок истории автора

Из книги Всеобщая мифология. Часть II. Люди, бросавшие вызов?богам автора Балфинч Томас

Из книги Третий проект. Том III. Спецназ Всевышнего автора Калашников Максим

Конструкторы грядущего Авторы этой книги с точки зрения многих – жуткие еретики и сумасброды. На вопрос: «Можно ли управлять будущим?» мы отвечаем дружно и громко: «Да! Можно!». И это не требует таких уж фантастических затрат. Именно это в нашей стране вызывает наибольшие

Из книги Сенсации. Антисенсации. Суперсенсации автора Зенькович Николай Александрович

Глава 27 СЕКРЕТНЫЕ ИЗОБРЕТАТЕЛИ Водочный КулибинКто изобрел «Столичную»? Да-да, ту самую, что была украшением любого праздничного стола и манила взгляды знатоков-мужчин слегка запотевшим после холодильника стеклом бутылки со знаменитой на весь мир наклейкой.

Из книги Величайшие загадки истории автора Непомнящий Николай Николаевич

ДРЕВНИЕ ИЗОБРЕТАТЕЛИ На Пасху 1900 г. группа греческих ловцов губок возвращалась из своих традиционных мест промысла в Северной Африке домой на остров Сими, находящийся неподалеку от Родоса, когда налетел шторм. Подхваченные течением, они в конце концов оказались на почти

Из книги Тайная миссия Третьего Рейха автора Первушин Антон Иванович

Глава 4 Конструкторы будущего

Из книги Русский капитал. От Демидовых до Нобелей автора Чумаков Валерий

НОБЕЛИ Изобретатели и промышленники Наши квасные патриоты пугают обывателей тем, что вот, мол, придут иностранцы и скупят всю Россию, а нам всем останется только лапу сосать, глядя, как растаскивается народное добро. Между тем у Российской империи уже был удивительный

Из книги Всемирная история в лицах автора Фортунатов Владимир Валентинович

8.6.8. Изобретатели кинематографа братья Люмьер «Важнейшим из всех искусств для нас является кино». Так в пересказе Клары Цеткин определил пропагандистский потенциал кинематографа В. И. Ленин - создатель, вождь и идеолог партии коммунистов-марксистов в России. До

Из книги Поход «Челюскина» автора Автор неизвестен

Машинист Л. Мартисов. Изобретатели поневоле Грустно посмотрев на полынью, где несколько минут назад стоял «Челюскин», мы принялись ставить палатки.Мороз и пурга, эти вечные хозяева Арктики, давали себя чувствовать. Люди мерзли и окоченевшими, едва гнущимися руками

Из книги Техника: от древности до наших дней автора Ханников Александр Александрович

ЗНАМЕНИТЫЕ УЧЕНЫЕ, ИЗОБРЕТАТЕЛИ И КОНСТРУКТОРЫ ГЕОРГИЙ АГРИКОЛА(1494–1555)Георгий Агрикола – немецкий врач и ученый. Заложил основы минералогии и геологии, горного дела и металлургии. В главном труде своей жизни – 12-томной монографии «О металлах» дал полное и

Из книги Великие исторические личности. 100 историй о правителях-реформаторах, изобретателях и бунтарях автора Мудрова Анна Юрьевна

Изобретатели, первооткрыватели

Из книги Фронт идет через КБ: Жизнь авиационного конструктора, рассказанная его друзьями, коллегами, сотрудниками [с иллюстрациями] автора Арлазоров Михаил Саулович

Конструкторы и наука Пятилетие, начавшееся в 1946 году в авиации, без преувеличения можно назвать пятилетием загадок. Случилось то, чего и ожидать никто не мог. Теория внезапно отстала, позволив практике совершить смелый, хотя и незаконный, никем не предусмотренный

Из книги Россия - родина Радио. Исторические очерки автора Бартенев Владимир Григорьевич

автора Частиков Аркадий

Блез Паскаль и Вильгельм Шиккард Первые конструкторы механических калькуляторов От горничной до герцогини К математической машине Проявлен всеми интерес. И вот однажды некто Блез Паскаль С большим проникновеньем Им рассказал про вычисленья И логику. И тем

Из книги Архитекторы компьютерного мира автора Частиков Аркадий

ГЛАВА 2 Первые изобретатели

Из книги Архитекторы компьютерного мира автора Частиков Аркадий

ГЛАВА 3 Выдающиеся конструкторы

По сравнению с блестящими электронными изобретениями, которые наполняют нашу жизнь сегодня, плуг, похоже, не особо блистает. Это простой инструмент, предназначенный для вырезания борозд в почве, ее подготовке к удобрениям и посадке культур. Но если бы не плуг, других изобретений в нашем списке, наверное, не было бы.

Никто не знает, кто изобрел плуг или когда он появился впервые. Вполне возможно, что его разработали независимо в разных регионах, причем разработали еще в доисторическую эпоху. До плуга люди занимались преимущественно охотой или собирательством. Их жизнь зависела исключительно от поиска достаточного количества пищи, чтобы выжить от сезона к сезону. Выращивание пищи вносило в жизнь определенную стабильность, но руками делать это было сложно и долго. Появление плуга изменило все.

Плуг сделал работу в поле проще и быстрее. Улучшения в дизайне плуга сделали работу с землей настолько эффективной, что люди начали собирать намного больше пищи, чем им было нужно для выживания. Они начали продавать излишки за товары или услуги. А если вы можете получить еду за счет торговли, в вашей повседневной жизни появляется больше времени для других дел, помимо выращивания еды, например, производства товаров и услуг, которые могут понадобиться тем, кто выращивает еду.

Возможность торговать и хранить материалы привела к изобретению письменности, счета, укреплений и военных технологий. По мере увлеченности населений этими делами, разрастались города. Не будет преувеличением сказать, что именно плуг позволил состояться человеческой цивилизации.


Колесо - другое изобретение, настолько древнее, что мы не знаем, кто первым его изобрел. Самое старое колесо и осевой механизм мы нашли близ Любляны, Словения, и возраст его порядка 3100 лет до н. э.

Колесо сделало перевозку грузов быстрее и эффективнее, особенно если прицепить их к конным колесницам и повозкам. Но если бы его использовали только для транспортировки, колесо не стало бы таким уж грандиозным изобретением. Более того, отсутствие качественных дорог ограничивало полезность колеса в течение тысяч лет.

Колесо можно использовать для многих других вещей, не только для перевозки зерна на тележке. Десятки тысяч других изобретений задействуют колесо, от водяного колеса мельницы до шестеренок и деталей, которые позволяли древним культурам создавать сложные машины. Шатуны и ролики задействуют колеса. Масса современных технологий задействуют колеса: центрифуги, электрические двигатели и двигатели внутреннего сгорания, реактивные двигатели, электростанции и многое другое.

Печатный пресс


Как и со многими изобретениями в этом списке, человек, который изобрел, по нашему мнению, печатный станок (Иоганн Гутенберг в 1430-х годах), просто улучшил уже существующие технологии и сделал их полезными и достаточно эффективными, чтобы они приобрели популярность. Мир уже пользовался бумагой и блочной печатью - китайцы дошли до этого еще в начале 11 века - но их сложный язык не дал технологии распространиться. Марко Поло привез идею в Европу в 1295 году.

Гутенберг объединил идею блок-печати с винтовым прессом (использовался в производстве вина и оливкового масла). Он также разработал металлические печатные блоки, которые были гораздо более долговечны и проще в производстве, чем ручная резьба букв по дереву. Наконец, прогресс в производстве чернил и бумаги помог произвести революцию во всем процессе масс-печати.

Печатный станок позволил записывать колоссальные объемы информации и распространять по всему миру. До этого книги могли позволить себе лишь состоятельные люди, но массовое производство чрезвычайно сбило цену на них. Печатный станок позволил свершиться многим другим изобретениям, но гораздо более тонким способом, чем колесо. Благодаря распространению знаний миллиарды людей получили образование, которое впоследствии использовали для создания своих собственных изобретений в последующие столетия.

Охлаждение


Холодильник - отличная штука, использующая способность веществ поглощать и выгружать тепло, когда меняется давление и состояние вещества (как правило, из газа в жидкость и наоборот). Сложно выделить одного изобретателя холодильника, поскольку эта идея была широко известна и постепенно улучшалась в течение почти 200 лет. Некоторые указывают на конструкцию устройства для сжатия пара, созданную Оливером Эвансом в 1805 году, другие отмечают дизайн настоящего предшественника современного холодильника вроде того, что у вас на кухне, созданный Карлом фон Линде в 1876 году. Десятки изобретателей, включая Альберта Эйнштейна, улучшали или дополняли конструкцию холодильника много лет.

В начале 20 века, когда сбор натурального льда был еще распространен, крупные отрасли промышленности вроде пивоварен начали использовать льдогенераторы. К моменту Первой мировой собранный лед в промышленности стал редкостью. Однако лишь к 1920-м годам, когда появились безопасные хладагенты, холодильники стали нормой.

Возможность сохранять пищу в течение длительных периодов (и даже во время транспортировки, когда были разработаны грузовики-рефрижераторы) кардинально изменила пищевую промышленность и привычки питания людей во всем мире. Появился легкий доступ к свежему мясу и молочным продуктам даже в жаркие летние месяцы, а также исчезла необходимость собирать и отгружать природный лед - который к тому же никогда не поспевал за ростом мирового населения.

Связь


Может быть, нечестно объединять телеграф, радио и телевидение в одном «изобретении», но развитие коммуникационных технологий повышало полезность и эффективность сферы в целом с тех пор, как Сэмюэль Морзе изобрел электрический телеграф в 1836 году (работая над совершенно другим, разумеется). Телефон по своей сути повторил и улучшил эту идею, обеспечив людей голосовой связью по медному проводу, в отличие от сугубо текстовых сигналов, прописанных кодом Морзе. Эти методы связи работали от пункта к пункту и требовали обширной инфраструктуры проводов для функционирования.

Беспроводная передача сигналов с использованием электромагнитных волн волновала многих изобретателей по всему миру, и в начале 20 века Гульельмо Маркони и популяризовали ее. В конце концов, звук стало можно передавать без проводов, а инженеры постепенно улучшали передачу изображений. Радио и телевидение стали новым опорным пунктом в коммуникациях, поскольку позволяли посылать сообщения тысячам или миллионам людей, если те располагали приемниками.

Развитие коммуникационных технологий эффективно сократило мировые расстояния. Всего за 120 лет мы перешли из мира, в котором проходило несколько недель, пока вести распространялись по стране, в мир, в котором мы можем воочию наблюдать, что происходит на другом конце земного шара. Появление массовых коммуникаций изменило наши взаимоотношения и обеспечило простой доступ к информации.

Паровой двигатель


До изобретения парового двигателя большинство продуктов делали вручную. Водяные колеса и тягловой скот были единственными «промышленными» мощностями, конечно же, со своими ограничениями. Промышленная революция, которая является, пожалуй, одним из крупнейших изменений, случившихся за короткий промежуток времени в истории цивилизации, выехала вперед верхом на паровом двигателе.

Идея использования пара для питания машин родилась тысячи лет назад, но творение Томаса Ньюкомена в 1712 году первым стало использовать эту энергию для полезной работы (выкачивания воды из шахт в большинстве случаев). В 1769 году Джеймс Уатт модифицировал двигатель Ньюкомена, добавив отдельный конденсатор, который значительно увеличил мощность парового двигателя и стал более практичным в работе. Он также разработал способ получения вращательного движения с помощью двигателя, что тоже прибавило эффективности. Собственно, Уатт и считается изобретателем парового двигателя.

Двигатели Ньюкомена и Уатта использовали вакуум конденсированного пара для движения поршней, а не давление расширяющегося пара. Из-за этого двигатели были громоздкими. Ричард Тревитик и другие впоследствии создали паровые двигатели высокого давления, которые были достаточно малыми, чтобы уместиться в поезде. Паровые двигатели не только обеспечили быстрое производство товаров на заводах, но и устанавливались на паровозы и пароходы, которые перевозили товары по миру.

Хотя паровой двигатель затмили электрический двигатель и двигатель внутреннего сгорания в области транспорта и энергетики, идея по-прежнему находит применение. Большинство электростанций в мире на самом деле вырабатывают электроэнергию с использованием паровых турбин, пар которых нагревается за счет сжигания угля, природного газа или ядерного реактора.


Если паровой двигатель мобилизовал промышленность, автомобиль мобилизовал людей. Идея персонального транспорта существовала много лет, но Motorwagen Карла Бенца 1885 года, работающий на двигателе внутреннего сгорания его собственной конструкции, везде считается первым автомобилем. Усовершенствования Генри Форда в процессе производства - и эффективный маркетинг - обеспечили падение цен и рост желания среди будущих владельцев авто в Америке. Вскоре последовала и Европа.

Эффект появления автомобиля в коммерции, обществе и культуре сложно переоценить. Многие из нас могут запрыгнуть в автомобиль и отправиться куда душа пожелает, что эффективно расширяет размер любого сообщества, в котором мы хотим оказаться, или же приближает магазины и друзей. Наши города в значительной степени разработаны и построены с учетом доступа к автомобилям, дороги и парковки занимают много места, на них выделяется существенный кусок государственного бюджета. Автомобильная промышленность вызвала огромный экономический рост по всему миру, но произвела вместе с этим много загрязнений.


Если у пунктов этого списка и есть что-то общее, так это то, что ни одно крупное изобретение не было рождено одним гением или одним изобретателем. Каждое изобретение создавалось на основе предыдущих конструкций, и человек, которого обычно ассоциируют с изобретением, является, как правило, тем, кто сделал его коммерчески жизнеспособным. То же самое и с лампочкой. Вы, наверное, думаете, что лампочку изобрел Томас Эдисон, но в 1870-х годах над этой идеей работали десятки других людей, и вместе с ними - Эдисон со своей лампой накаливания. Джозеф Свон работал над ней в Великобритании, и оба изобретателя объединили усилия и образовали одну компанию Ediswan.

Сама лампочка работает путем передачи электричества по проводку с высоким сопротивлением (известен как нить). Избыток энергии, порожденный сопротивлением, распространяется как тепло и свет. В стеклянной лампочке нить содержится в вакууме или инертном газе, предотвращающих возгорание.

Возможно, вы подумали, что лампочка изменила мир, позволив людям работать в ночи или в темных местах (ну, отчасти, так и есть), но у нас уже были относительно дешевые и эффективные газовые лампы и другие источники света к тому времени. Важна инфраструктура, которая была построена с целью обеспечить электричеством каждый дом, она изменила мир. Сегодня наша жизнь наполнена устройствами, повсеместно соединенными с розетками. Этим мы обязаны стеклянной лампочке.

Компьютер


Компьютер - это машина, которая берет информацию, манипулирует ей в некотором роде и выдает новую информацию. У современного компьютера нет единого изобретателя, хотя идеи британского математика Алана Тьюринга считаются в высшей степени важными в области вычислительной техники. Механические вычислительные устройства существовали в 1800-х годах (иногда встречались устройства, которые можно определить как компьютеры, даже в древние века), но электронные компьютеры появились только в 20 веке.

Компьютеры способны производить сложные математические вычисления с невероятной скоростью. Когда они работают под управлением опытных программистов, то выдают невероятные вещи. Некоторые из передовых военных самолетов не могли бы летать без постоянных компьютерных поправок в процессе управления. Компьютеры производят секвенирование человеческого генома, позволяют нам запускать космические аппараты на орбиту, контролируют медицинское оборудование и позволяют нам наслаждаться фильмами и видеоиграми.

Ежедневно пользуясь благами компьютеров, мы даже не представляем, насколько от них зависимы. Они позволяют нам хранить и извлекать огромные объемы информации почти мгновенно. Многие вещи, которые мы считаем сами собой разумеющимися в мире, не могли бы функционировать без компьютеров, от автомобилей и телефонов до электростанций.


Интернет, сеть компьютеров, охватывающих всю планету, позволяет людям получить доступ практически к любой информации, размещенной в любой точке мира в любой момент времени. Его воздействие на бизнес, коммуникации, экономику, развлечения и даже политику невозможно переоценить. Возможно, Интернет не изменил мир так же, как плуг, но на одном уровне с автомобилем или паровым двигателем его точно можно поставить.

DARPA (Оборонное агентство передовых исследовательских проектов) создало ARPANET в конце 1960-х годов. Эта сеть соединений между компьютерами предназначалась для военных и научных исследований. Другие компьютерные сети стали появляться по миру в ближайшие несколько лет, и к концу 1970-х годов ученые создали единый протокол, TCP/IP, который позволил компьютерам любой сети связываться с компьютерами в другой сети. Это и стало, по сути, рождением Интернета, но прошло 10 или больше лет, прежде чем другие сети по миру приняли новый протокол, сделав Сеть воистину глобальной.

Интернет является настолько мощным изобретением, что мы сегодня, наверное, только начинаем видеть эффекты, которые он оказывает на мир. Возможность распространять и перестраивать информацию с такой эффективностью лишь ускоряется со временем. В то же время некоторые опасаются, что наша зависимость от связи, работы, игр и бизнеса в Интернете разрушает местные сообщества и приводит к социальной изоляции. Но как и у любого изобретения, польза Интернета превосходит побочные негативные стороны его использования.

А какое изобретение вы могли бы поставить в наш список?

В этой статье мы поговорим о самых великих изобретателях мира во все времена. Эти люди, пожалуй, самые известные изобретатели в истории.

Список изобретателей:

Архимед Сиракузский

(287 - 212 до н. э.)

Архимед был родом из Сиракуз, поэтому получил прозвище Архимед Сиракузский. Он прежде всего известен как выдающийся математик, физик и инженер. В сферу его интересов также попадали астрономия и, конечно же, изобретения. Жизнь Архимеда известна лишь в общих деталях, поэтому полного жизнеописания не найти

В целом он считается одним из великих математиков древности и одним из величайших во все времена. Архимед предвосхитил современное исчисление и анализ, применяя понятия бесконечно малых и метод исчерпывания, чтобы вывести и строго доказать ряд геометрических теорем, в том числе точно вычислить площадь круга, площадь поверхности и объем сферы и площадь под параболой.

Винт Архимеда для подъёма воды в оросительных системах.

Другие математические достижения включают в себя получение точной аппроксимации числа Пи, определение и исследование спирали, которая получила его имя (архимедова спираль) и создание системы выражения очень больших чисел с использованием возведения в степень. Он также был одним из первых применил математику к физическим явлениям, заложил основы гидростатики и статики, включая физическое объяснение работы рычагов, которые сейчас все проходят в школе на уроках физики. Известно, что Архимед активно старался усовершенствовать и автоматизировать различные задачи. Одной из самой известных проблем, которые он решил, была проблема поднятия воды в оросительных системах, которую он решил при помощи инновационного изобретения — специального шнекового винта. Также он изобретал составные шкивы и оборонительные машины для защиты своих родных Сиракуз от вторжения.

(10 - 75 н.э.)

Герон Александрийский был математиком и инженером, который работал в своем родном городе Александрия, Римский Египет. Он считается величайшим экспериментатором античности, и его работа является развитием эллинистической научной традиции.

Был занят развитием геометрии, механики, гидростатики, а также оптики. Написал ряд научных трудов (с уклоном в практику) по всем этим областям. В Тёмные века его имя было забыто, а его изобретения перестали представлять какой-либо интерес для людей того времени.

Среди его изобретений вы найдёте первые роботизированные системы, самозаряжающиеся арбалеты, музыкальные шкатулки, автоматы для продаж и много другое, что кажется невероятным для того времени. Герон также опубликовал хорошо известное описание парового устройства, называемого эолипилом (иногда называемым «двигателем Герона» или «паровой турбиной Герона»). Говорят, что он был последователем атомистов.

Леонардо да Винчи

Леонардо да Винчи был итальянским ренессансным полиматом, то есть человеком, чей интеллект позволял ему не ограничиваться одной сферой интересов. В круг его интересов входили изобретение, живопись, скульптура, архитектура, наука, музыка, математика, техника, литература, анатомия, геология, астрономия, ботаника, письменность, история и картография. Среди учёных он по праву считается прародителем палеонтологии, палеоихнологии и архитектуры. В художественной среде можно часто встретить его оценку, как величайшего художника во все времена. Он олицетворяет идеал гуманизма эпохи Возрождения.

В истории и науке Леонардо считается главным образцом «универсального гения» или «человека эпохи Возрождения», человека «неутолимого любопытства» и «лихорадочно изобретательного воображения». По словам историка искусства Хелен Гарднер, масштабы и глубина его интересов были беспрецедентны в истории, и «его ум и личность кажутся нам сверхчеловеческими, в то время как сам он был человеком таинственным и отдаленным». Марко Роски отмечает, что, хотя вокруг жизни Леонардо много мифов, гипотез и предположений, само же мышление и восприятие мира Винчи были вполне себе логичными с использованием эмпирических методов познания, которые для тех времён были нарушением общепринятых правил и догматов.

Леонардо глубоко уважают за его фантастическую изобретательность. Он создал концепты летательных машин (самолёты, вертолёты, парашюты) и прочее, военных машин (танк, скорострельные арбалеты, штурмовые лестницы и прочее), строительных машин (экскаватор, различные краны и лестницы и прочее), музыкальных машин, кулинарных машин и много чего ещё. При его жизни было построено не так уж и много его изобретений, что можно объяснить низким уровнем развития промышленности, металлургии и техники того времени. Однако некоторые из его небольших изобретений, такие как автоматическая намотка бобины и машина для тестирования прочности проволоки на растяжение, вошли в промышленный мир незавершенными. Хотя его достижения нам сейчас кажутся просто огромными, он, к сожалению, не оказал прямого влияния на развитие науки, так как не опубликовал многих из своих выводов, не поделившись ими с учёными и изобретателями того времени.

Кулибин Иван Петрович

Иван Петрович Кулибин был русским механиком и изобретателем. Он родился в Нижнем Новгороде и даже позже получил прозвище «нижегородский Архимед». С самого детства он проявил интерес к созданию механических изделий. Вскоре его интерес перерос в создание часовых механизмов. Его изделия и плодовитое воображение вдохновили многих изобретателей.

Самым известным его изобретением является проект моста через реку Нева, тем самым впервые смоделировав настолько сложный мост. Помимо этого он изобретал различные автоматизированные механизмы, например, самокатная повозка с педальным механизмом и даже механических протезов. Его сфера интересов также касалась водного транспорта, где он также сделал ряд изобретений.

В массах он был прежде всего известен, как изобретатель забавных игрушек и фейерверков, которыми развлекал людей. Всё это сильно удивляло современников. Что интересно, он был абсолютным трезвенником, не играл в азартные игры и не курил табак.

Джеймс Ватт

Джеймс Ватт родился в Шотландии. Он был изобретателем, инженером-механиком и химиком. Прежде всего известен тем, что улучшил паровой двигатель Томаса Ньюкомена. Именно паровой двигатель Ватта стал фундаментом для промышленной революции как в Великобритании, так и во всём мире. После его модернизации эффективность работы паровой машины возросла в 4 и более раз, а управление ею упростилось.

Подробное объяснение всех принципов работы паровой машины Ватта и физики процесса можете посмотреть на видео ниже:

Помимо механики и физики Ватт интересовался химией и изобрёл средство для отбеливания. Он на старости лет даже успел позаниматься изобретательством в искусстве, пытаясь разработать эйдограф (копировальная машина) для скульптур, развивая идеи пантографа (машина для копирования карт). Также Ватт создал концепцию измерения мощности в лошадиных силах, а позже учёные решили назвать в честь Ватта единицу для измерения мощности в системе СИ (ватт), которую мы теперь видим на каждой лампочке.

Никола Тесла

Никола Тесла — это выдающийся сербско-американский изобретатель, без которого сложно себе представить эру электричества в 20-м веке. Он не только был инженером, физиком, конструктором и механиком, но и большим мечтателем-футуристом.

Своё образование он получил в Австрийской империи, а в 1884 году эмигрировал в США, где получил гражданство. После чего он разрабатывает асинхронный двигатель переменного тока, а также патентует ещё ряд связанных с переменным током изобретений, которые в итоге становятся сердцем полифазной системы кампании Вестингауза.

3-х фазный электрический двигатель, вращающийся в магнитном поле

Заработав значительную сумму денег, он продолжает свои эксперименты в области электричества. Он экспериментирует с разрядными трубками и пробует делать первые снимки при помощи рентгена. Он первым построил небольшую лодку с беспроводным управлением, которую продемонстрировал на выставке, чем вызвал удивление современников, так как они не могли понять, как она управляется.

Позже он загорается идеей беспроводного освещения и всемирного беспроводного распределения электроэнергии. В своей лаборатории в Колорадо-Спрингс он ставит опыты с высоковольтным и высокочастотным электричеством. Суть была в том, что он хотел осуществить беспроводную передачу электроэнергии между целыми континентами! Но ему не хватило денег, и он не смог его закончить. Позже в честь Теслы назовут единицу для измерения индукции в магнитном поле.


Ещё два десятилетия назад люди и мечтать не могли о таком уровне развития технологий, как существует сегодня. Сегодня, чтобы пролететь половину земного шара, нужно всего полдня, современные смартфоны в 60 000 раз легче и в тысячи раз более производительные, чем первые компьютеры, сегодня производительность сельского хозяйства и продолжительность жизни высоки, как никогда в истории человечества. Попытаемся разобраться, какие же изобретения стали наиболее важными и, по сути, изменили историю человечества.

1. Цианид


Хотя цианид кажется довольно спорным, чтобы включать его в этот список, данное химическое вещество сыграло важную роль в истории человечества. В то время как газообразная форма цианида стала причиной гибели миллионов людей, именно это вещество является основным фактором при добыче золота и серебра из руды. Поскольку мировая экономика была привязана к золотому стандарту, цианид является важным фактором в развитии международной торговли.

2. Самолет


Сегодня уже никто не сомневается в том, что изобретение "металлической птицы" оказало одно из самых больших воздействий на историю человечества благодаря радикальному сокращению времени, необходимого для транспортировки товаров или людей. Изобретение братьев Райт было с восторгом воспринято общественностью.

3. Анестезия


До 1846 года любая хирургическая процедура была похожа скорее на какую-то мучительную пытку. Хотя анестетики использовались на протяжении тысяч лет, их ранние формы представляли собой разве что алкоголь или экстракт мандрагоры. Изобретение современной анестезии в виде закиси азота и эфира позволило врачам спокойно оперировать пациентов без малейшего сопротивления с их стороны (ведь пациенты ничего не чувствовали).

4. Радио

Истоки истории радио очень спорные. Многие утверждают, что его изобретателем был Гульельмо Маркони. Другие же утверждают, что это был Никола Тесла. В любом случае, эти два человека сделали очень многое, чтобы люди смогли успешно передавать информацию через радиоволны.

5. Телефон


Телефон был одним из самых важных изобретений в нашем современном мире. Как и в случае всех крупных изобретений, по поводу того, кто был его изобретателем, спорят до сих пор. Ясно только одно: патентное ведомство США выдало первый телефонный патент Александру Грэхему Беллу в 1876 году. Этот патент послужил основой для будущих исследований и развития электронной передачи звука на большие расстояния.

6. Всемирная паутина


Хотя все думают о том, что это совершенно недавнее изобретение, Интернет существовал в архаической форме в 1969 году, когда вооруженные силы Соединенных Штатов разработали ARPANET. Но в относительно современном виде Интернет появился только благодаря Тиму Бернерсу-Ли, который создал сеть гиперссылок на документы в Университете штата Иллинойс и создал первый браузер World Wide Web.

7. Транзистор


Сегодня кажется, что снять трубку телефона и позвонить кому-то в Мали, США или Индии - очень легко, но это не было бы возможным без транзисторов. Полупроводниковые транзисторы, которые усиливают электрические сигналы, сделали возможным отправку информации на большие расстояния. Человеку, который стал первым проводить эти исследования, Уильяму Шокли, приписывают создание Силиконовой долины.

8. Атомные часы


Хотя это изобретение может показаться не столь революционным, как многие из предыдущих пунктов, изобретение атомных часов имело решающее значение в продвижении науки. Используя микроволновые сигналы, излучаемые изменяющимися уровнями энергии электронов, атомные часы и их точность сделали возможным широкий спектр современных современных изобретений, в том числе GPS, ГЛОНАСС, а также Интернет.

9. Паровая турбина


Паровая турбина Чарльза Парсонса буквально изменила развитие человечества, придав толчок индустриализации стран и сделав возможным для кораблей быстро преодолевать океанские просторы. Только в 1996 году 90% электроэнергии в США было сгенерировано паровыми турбинами.

10. Пластик


Несмотря на повсеместное использование в нашем современном обществе пластика, он появился только в прошлом веке. Водостойкий и высокоподатливый материал используется практически во всех отраслях промышленности, от упаковки пищевых продуктов до игрушек и даже космических кораблей. Хотя большинство современного пластика делают из нефти, сегодня все чаще звучат призывы вернуться к оригинальной версии, которая частично была органической.

11. Телевидение


У телевидения была длинная и легендарная история, которая началась еще с 1920-х годов и продолжается до сих пор. Это изобретение стало одним из наиболее популярных потребительских продуктов по всему миру - почти 80% семей имеют телевизор.

12. Нефть


Большинство людей вообще не задумываются, когда заправляют бак своего авто. Хотя люди добывают нефть в течение тысячелетий, современная нефтяная и газовая промышленность возникли во второй половине девятнадцатого века. После того, как промышленники увидели все преимущества продуктов из нефти и количество энергии, вырабатываемой при их сжигании, они наперегонки бросились делать скважины для добычи "жидкого золота".

13. Двигатель внутреннего сгорания


Без открытия эффективности сгорания нефтепродуктов, современный двигатель внутреннего сгорания был бы невозможен. Учитывая, что он начал применяться буквально везде: от автомобилей до сельскохозяйственных комбайнов и горнопроходческих машин, эти двигатели позволили людям заменить непосильную, кропотливую и трудоемкую работу машинами, которые могут делать эту работу гораздо быстрее. Двигатель внутреннего сгорания также дал людям свободу передвижения, поскольку именно он был использован в автомобилях.

14. Железобетон


Бум в строительстве высотных зданий случился только в середине девятнадцатого века. Благодаря встраиванию стальных арматурных стержней (арматуры) в бетон перед его заливкой люди смогли строить железобетонные искусственные сооружения в разы большего веса и размера, нежели ранее.


Сегодня на планете Земля жило бы намного меньше людей, если бы не было пенициллина. Официально открытый шотландским ученым Александром Флемингом в 1928 году пенициллин стал одним из самых важных изобретений/открытий, которое сделало современный мир возможным. Антибиотики были одними из первых лекарственных средств, которые смогли бороться с стафилококками, сифилисом и туберкулезом.

16. Холодильник


Обуздание тепла было, возможно, самым важным открытием на сегодняшний день, но это заняло много тысячелетий. Хотя люди уже давно использовали лед для охлаждения, его практичность и доступность была ограничена. В девятнадцатом веке ученые изобрели искусственное охлаждение с помощью химических веществ. К началу 1900-х годов, почти каждый мясоконсервный комбинат и крупный дистрибьютор продуктов питания уже использовал искусственное охлаждение для сохранения продуктов.

17. Пастеризация


За полвека до открытия пенициллина спасению множества жизней помог новый процесс, открытый Луи Пастером - пастеризация или нагревание продуктов (первоначально это были пиво, вино и молочные продукты) до температуры, достаточно высокой, чтобы убить большинство вызывающих порчу бактерий. В отличие от стерилизации, которая убивает все бактерии, пастеризация только снижает количество потенциальных патогенов до уровня, который делает большинство продуктов питания годными к употреблению без опаски заражения, при этом сохраняя вкус пищи.

18. Солнечная батарея


Подобно тому, как нефтяная промышленность вызвала бурное развитие промышленности в целом, изобретение солнечной батареи позволило людям использовать возобновляемую форму энергии гораздо более эффективным способом. Первая практически применимая солнечная батарея была разработана в 1954 году учеными Bell Telephone, сегодня же популярность и эффективность солнечных батарей резко возросла.

19. Микропроцессор



Сегодня людям пришлось бы забыть о своем ноутбуке и смартфоне, если бы не был изобретен микропроцессор. Один из наиболее широко известных суперкомпьютеров ENIAC был построен в 1946 году и он весил 27,215 тонн. Инженер Intel Тед Хофф создал первый микропроцессор в 1971 году, вместив все функции суперкомпьютера в один крошечный чип и тем самым сделав возможным создание портативных компьютеров.

20. Лазер



Усилитель индуцированного излучения света или лазер был изобретен в 1960 году Теодором Мейманом. Современные лазеры используются в множестве изобретений, в том числе в лазерных резаках, сканерах штрих-кодов и хирургическом оборудовании.

21. Азотфиксация


Хотя это может показаться слишком напыщенным, азотфиксация или фиксация молекулярного атмосферного азота "несет ответственность" за взрыв человеческой популяции. Путем преобразования атмосферного азота в аммиак стало возможным производство высокоэффективных удобрений, которые позволили увеличить объемы сельскохозяйственного производства.

22. Конвейер


Сегодня тяжело переоценить важность сборочных линий. До их изобретения все изделия делали вручную. Сборочная линия или конвейер позволила разработать крупносерийное производство одинаковых запчастей, значительно сократив время, которое требовалось, чтобы создать новый продукт.

23. Оральные контрацептивы


Хотя таблетки и пилюли были одним из основных методов лекарств, которые существовали уже в течение тысяч лет, изобретение орального контрацептива стало одним из наиболее значимых нововведений. Именно это изобретение стало стимулом для сексуальной революции.

24. Мобильный телефон / смартфон


Сейчас наверняка многие читают эту статью со смартфона. За это нужно поблагодарить компанию Motorola, которая еще в 1973 году выпустила первый беспроводной карманный мобильный телефон, который весил целых 2 кг, а на его подзарядку требовалось целых 10 часов. Что еще хуже, в то время можно было спокойно болтать только в течение 30 минут.

25. Электричество


Большинство современных изобретений было бы попросту невозможным без электричества. Пионеры, такие как Уильям Гилберт и Бенджамин Франклин, заложили первоначальную основу, на которой изобретатели, такие как Вольт и Фарадей начали вторую промышленную революцию.