Меню

Распространение колебаний в упругой среде. Продольные и поперечные волны

Обслуживание автомобиля

Механические колебания, распространяющиеся в упругой среде (твердой, жидкой или газообразной), называются механическими или упругими волнами .

Процесс распространения колебаний в сплошной среде называется волновым процессом или волной. Частицы среды, в которой распро-страняется волна, не вовлекаются волной в поступательное движение. Они лишь совершают колебания около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь со-стояние колебательного движения и его энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества .

В зависимости от направления колебаний частиц по отношению

к направлению, в котором распространяется волна, различают про-

дольные и поперечные волны.

Упругая волна называется продольной , если колебания частиц среды происходят в направлении распространения волны. Продоль-ные волны связаны с объемной деформацией растяжения − сжатия среды, поэтому они могут распространяться как в твердых телах, так и

в жидкостях и газообразных средах.

x ляться деформации сдвига. Этим свойст-вом обладают только твердые тела.

λ На рис. 6.1.1 представлена гармони-

висимость смещения всех частиц среды от расстояния до источника колебаний в данный момент времени. Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны. Длина волны также равна тому расстоянию,на которое рас-пространяется определенная фаза колебания за период колебаний

Колеблются не только частицы, расположенные вдоль оси 0х , а совокупность частиц, заключенных в некотором объеме. Геометриче-ское место точек, до которых доходят колебания к моменту времени t , называется фронтом волны . Фронт волны представляет собой ту по-верхность, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания еще не возникли. Геометрическое место точек, колеблющихся в одинаковой фазе, назы-вается волновой поверхностью . Волновую поверхность можно провес-ти через любую точку пространства, охваченного волновым процес-сом. Волновые поверхности могут быть любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно вол-на в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой множество парал-лельных друг другу плоскостей, а в сферической − множество концен-трических сфер.

Уравнение плоской волны

Уравнением плоской волны называется выражение, которое да-ет смещение колеблющейся частицы как функцию ее координат x , y , z и времени t

S = S (x , y , z ,t ). (6.2.1)

Эта функция должна быть периодической как относительно времени t , так и относительно координат x , y , z . Периодичность по времени вытекает из того, что смещение S описывает колебания час-тицы с координатами x , y , z , а периодичность по координатам следует из того, что точки, отстоящие друг от друга на расстоянии, равном длине волны, колеблются одинаковым образом.

Предположим, что колебания носят гармонический характер, а ось 0х совпадает с направлением распространения волны. Тогда вол-новые поверхности будут перпендикулярны оси 0х и, поскольку все

точки волновой поверхности колеблются одинаково, смещение S бу-дет зависеть только от координаты х и времени t

Найдем вид колебания точек в плоскости, соответствующей произвольному значению х . Для того, чтобы пройти путь от плоско-сти х = 0 до плоскости х , волне требуется время τ = x /υ. Следователь-но, колебания частиц, лежащих в плоскости х , будут отставать по времени на τ от колебаний частиц в плоскости х = 0 и описываться уравнением

S ( x ; t )= A cosω( t − τ)+ϕ = A cos ω t x . (6.2.4)
υ

где А − амплитуда волны; ϕ 0 − начальная фаза волны (определяется выбором начал отсчета х и t ).

Зафиксируем какое-либо значение фазы ω(t x υ) +ϕ 0 = const .

Это выражение определяет связь между временем t и тем местом х , в котором фаза имеет фиксированное значение. Продифференцировав данное выражение, получим

Придадим уравнению плоской волны симметричный относи-

тельно х и t вид. Для этого введем величину k = 2 λ π , которая называ-

ется волновым числом , которое можно представить в виде

Мы предполагали, что амплитуда колебаний не зависит от х . Для плоской волны это наблюдается в том случае, когда энергия вол-ны не поглощается средой. При распространении в поглощающей энергию среде интенсивность волны с удалением от источника коле-баний постепенно уменьшается, т. е. наблюдается затухание волны. В однородной среде такое затухание происходит по экспоненциальному

закону A = A 0 e −β x . Тогда уравнение плоской волны для поглощающей среды имеет вид

где r r − радиус-вектор, точки волны; k = k n r − волновой вектор ; n r − единичный вектор нормали к волновой поверхности.

Волновой вектор −это вектор,равный по модулю волновомучислу k и имеющий направление нормали к волновой поверхности на-

зывается.
Перейдем от радиус-вектора точки к ее координатам x , y , z
r r (6.3.2)
k r = k x x + k y y + k z z .
Тогда уравнение (6.3.1) примет вид
S (x , y , z ; t )= A cos(ω t k x x k y y k z z +ϕ 0). (6.3.3)

Установим вид волнового уравнения. Для этого найдем вторые частные производные по координатам и времени выражение (6.3.3)

∂ 2 S r r
t = −ω A cos t k r +ϕ 0) = −ω S ;
∂ 2 S r r
x = − k x A cos(ω t k r +ϕ 0) = −k x S
. (6.3.4)
∂ 2 S r r
y = − k y A cos t k r +ϕ 0) = −k y S ;
∂ 2 S r r
z = − k z A cos(ω t k r +ϕ 0) = −k z S
Сложив производные по координатам, и с учетом производной
по времени, получим
2 2 2 2
S 2 + S 2 + S 2 = − (k x 2 + k y 2 + k z 2)S = − k 2 S = k S 2 . (6.3.5)
t
x y z ω
2
Произведем замену k = ω 2 = и получим волновое уравнение
ω υ ω υ
∂ 2 S + ∂ 2 S + ∂ 2 S = 1 ∂ 2 S или S = 1 ∂ 2 S , (6.3.6)
x 2 y 2 z 2 υ 2 ∂t 2 υ 2 ∂t 2
где = ∂ 2 + ∂ 2 + ∂ 2 − оператор Лапласа.
x 2 y 2 z 2

Тема: Распространение колебаний в среде. Волны.
Физика. 9 класс.
Цель: Познакомить учащихся с волновым движением, рассмотреть его особенности, механизм
распространения волн.
Задачи:
­
обучающие: углубление знаний о видах колебательного движения, использование связи физики
с литературой, историей, математикой; формирование понятий волновое движение,
механической волны, вида волн, распространение их в упругой среде;
развивающие: развитие умений сравнивать, систематизировать, анализировать, делать выводы;
воспитательные: воспитание коммуникативности.
­
­
Дидактический тип урока: Изучение нового материала.
Оборудование: Ноутбук, мультимедийный проектор, видеоролик – волны на пружине, презентация
PowerPoint

К уроку.
Ход урока:
I. Проверка знаний и умений.
1. Ответить на вопросы.
 Внимательно прочитайте словосочетания. Определите, возможны ли свободные колебания:
поплавка на поверхности воды; тела на канале, прорытом сквозь земной шар; птицы на ветке;
шарика на плоской поверхности; шарика в сферической ямке; рук и ног человека; спортсмена на
батуте; иглы в швейной машинке.
 Какой автомобиль, нагруженный или без груза, будет совершать на рессорах более частые
колебания?
 Существует два типа часов. В основе одних – колебания груза на стержне, других – груза на
пружине. Каким образом можно регулировать частоту хода каждых часов?
 При периодических порывах ветра раскачался и рухнул мост Tacoma Narrous в Америке.
Объясните почему?
2. Решение задач.
Учитель предлагает выполнить компетентностно ­ ориентированное задание, структура и содержание
которого представлена ниже.
Стимул: Оценить имеющиеся знания по теме «Механические колебания».
Задачная формулировка: В течение 5 минут, используя приведенный текст, определите частоту и
период сокращения сердца человека. Запишите данные, которые вы не сможете использовать при решении
задач.
Общая длина кровеносных капилляров в организме человека примерно 100 тыс. км, что в 2,5 раза
превышает длину экватора, а общая внутренняя площадь – 2400 м2. Кровеносные капилляры имеют
толщину в 10 раз меньшую, чем волос. В течение минуты сердце выбрасывает в аорту около 4 л
крови, которая затем перемещается во все точки организма. Сердце в среднем сокращается 100 тыс.
раз в сутки. За 70 лет жизни человека сердце сокращается 2 миллиарда 600 миллионов раз и
перекачивает 250 миллионов раз.
Бланк для выполнения задания:
1. Данные необходимые для определения периода и частоты сокращения сердца:
а) ___________; б) _________
Формула для вычисления: ______________
Вычисления _______________
=________; Т=_____________
ν
2. Излишние данные
а) ___________
б) ___________

в) ___________
г) ___________
Модельный ответ:
Данные необходимые для определения периода и частоты сокращения сердца:
а) Число сокращений N=100000; б) Время сокращений t=1 сут.
ν
c­1; T=1/1,16=0,864 c
Формула для вычисления: =ν N/t; T=1/ν
Вычисления =100000/(24*3600)=1,16
=1,16
c­1; Т=0,864 c.
ν
Или а) Число сокращений N=2600000000; б) Время сокращений t=70 лет. – Но эти данные
приводят к более сложным вычислениям, поэтому нерациональны.
Излишние данные
а) Общая длина кровеносных сосудов – 100 тыс. км
б) общая внутренняя площадь – 2400 м2
в) В течение минуты сердце выбрасывает в кровь около 4 л крови.
г) Толщина кровеносных сосудов в 10 раз меньше толщины волоса.
Поле модельных ответов
Выделены данные для определения частоты и периода сокращения сердца.
Приведены формулы для вычисления.
Выполнены вычисления, приведен правильный ответ.
Выделены из текста излишние данные.
Инструмент
оценки
ответа
1
1
1
1
II.
Объяснение нового материала.
Все частицы среды связаны между собой силами взаимного притяжения и отталкивания, т.е.
взаимодействуют друг с другом. Поэтому если хотя бы одну частицу вывести из положения равновесия
(заставить совершать колебания), то она потянет за собой рядом находящуюся частицу(благодаря
взаимодействию между частицами это движение начинает распространяться во все стороны). Таким
образом, колебания будут передаваться от одной частицы к другой. Такое движение называется волновым.
Механической волной (волновым движением) называется распространение колебаний в упругой
среде.
Колебания, распространяющиеся в пространстве со временем, называются волной.
или
В данном определении речь идет о так называемых бегущих волнах.
Основное общее свойство бегущих волн любой природы заключается в том, распространяясь в
пространстве, переносят энергию, но без переноса вещества.
В бегущей волне происходит перенос энергии без переноса вещества.
В данной теме мы будем рассматривать только упругие бегущие волны, частным случаем которых
является звук.
Упругие волны – это механические возмущения, распространяющиеся в упругой среде.
Иначе говоря, образование упругих волн в среде обусловлено возникновением в ней упругих сил,
вызванных деформацией.

Кроме упругих волн существуют и другие виды волн, например волны на поверхности жидкости,
электромагнитные волны.
Волновые процессы встречаются почти во всех областях физических явлений, поэтому их изучение
имеет большое значение.
Волновое движение бывает двух видов: поперечное и продольное.
Поперечная волна – частицы колеблются (движутся) перпендикулярно (поперек) скорости
распространения волны.
Примеры: волна от брошенного камня…
Продольная волна – частицы колеблются (движутся) параллельно скорости распространения
волны.
Примеры: звуковые волны, цунами…
Механические волны
Шнур Пружина
поперечные
продольные
Поперечные волны.
Продольные волны.
Возникает упругая деформация сдвига.
Объем тела
не меняется.
Силы упругости стремятся вернуть тело в
исходное положение. Эти силы и вызывают
колебания среды.
Сдвиг слоев друг относительно друга в
жидкости и газе не приводит к появлению
сил упругости, следовательно возникают
только в твердых телах.
Возникают при деформации сжатия.
Силы упругости возникают в твердых
телах, жидкостях и газах. Эти силы
вызывают колебания отдельных участков
среды, поэтому распространяются во всех
средах.
В твердых телах скорость распространения
больше.
III.
Закрепление:
1. Интересные задачи.
а) В 1883г. При печально известном извержении индонезийского вулкана Кракатау воздушные ударные
волны, рожденные подземными взрывами, трижды обошли земной шар.
К какому виду волн можно отнести ударную волну? (К продольным волнам).
б) Цунами – грозный попутчик землетрясений. Родилось такое название в Японии и означает
гигантскую волну. Когда она накатывает на берег, создается впечатление, что это не волна вовсе, а
море, разъяренное, неукротимое, кидается на берег. Ничего нет удивительного в том, что цунами
производят на нем опустошения. Во время землетрясения 1960 г. На побережье Чили бросались

волны высотой до шести метров. Море отступало и наступало несколько раз в течение второй
половины дня.
К какому виду волн относятся цунами? Чему равна амплитуда цунами 1960 года, обрушившаяся на
Чили?(Цунами относятся к
волны равна 3 м).
(иллюстрация цунами:
продольным волнам. Амплитуда
http://ru.wikipedia.org/wiki/Изображение:2004_Indian_Ocean_earthquake_Maldives_tsunami_wave.jpg
в) Рифели – это знаки мелкой волновой ряби. Они существуют на земле со времен появления сыпучих
сред – снега и песка. Их отпечатки встречаются в древних геологических пластах (иногда вместе со
следами динозавров). Первые научные наблюдения над рифелями были сделаны Леонардо да Винчи. В
пустынях расстояние между соседними гребнями волновой ряби измеряется от 1­12 см (чаще 3­8см)
при глубине впадин между гребнями в среднем 0,3­1 см.
Предположив, что рифели – это волна, определите амплитуду волны (0,15­0,5 см).
Иллюстрация рифели:
http://rusnauka.narod.ru/lib/phisic/destroy/gl7/image246.gif
2. Физический опыт. Индивидуальная работа.
Учитель предлагает учащимся выполнить компетентностно – ориентированное задание, структура и
содержание которого представлена ниже
Стимул: оценить приобретенные знания по теме «Волновое движение».
Задачная формулировка: используя выданные приборы и знания, полученные на уроке,
определить:
­ какие волны образуются на поверхности волны;
­ какую форму имеет фронт волны от точечного источника;
­ перемещаются ли частицы волны в направлении распространения волны?
­ сделайте вывод об особенности волнового движения.

Оборудование: стакан от калориметра, пипетка или бюретка, стеклянная трубка, спичка.
Волны, образующиеся на поверхности воды, являются __________
Волны на поверхности воды имеют форму _________
Спичка, помещенная на поверхность воды при распространении волны, ___________
Бланк для выполнения задания
Особенность волнового движения _________________
Поле модельных ответов
Инструмент оценки
ответа
Волны, образующиеся на поверхности воды, являются поперечными.
Волны на поверхности воды имеют форму окружности.
Спичка, помещенная на поверхность воды при распространении волны, не
перемещается.
Особенность волнового движения – при волновом движении не происходит
смещения вещества вдоль направления распространения волны.
Всего
III.
Домашнее задание: §31, 32
1
1
1
2
5
http://school­collection.edu.ru/catalog/rubr/8f5d7210­86a6­11da­a72b­0800200c9a66/21674/

Твердые, жидкие, газообразные тела больших размеров можно рассматривать как среду, состоящую из отдельных частиц, взаимодействующих между собой силами связи. Возбуждение колебаний частиц среды в одном месте вызывает вынужденные колебания соседних частиц, те в свою очередь возбуждают колебания следующие и т. д.

Процесс распространения колебаний в пространстве называется волной.

Возьмем длинный резиновый шнур и заставим один конец шнура совершать вынужденные колебания в вертикальной плоскости. Силы упругости, действующие между отдельными частями шнура, приведут к распространению колебаний вдоль шнура, и мы увидим волну, бегущую вдоль шнура.

Другой пример механических волн - волны на поверхности воды.

При распространении волн в шнуре или на поверхности воды колебания происходят перпендикулярно направлению распространения волн. Волны, в которых колебания происходят перпендикулярно направлению распространения, называются поперечными волнами.

Продольные волны.

Не всякие волны можно увидеть. После удара молотком по ветви камертона мы слышим звук, хотя никаких волн в воздухе не видим. Ощущение звука в наших органах слуха возникает при периодическом изменении давления воздуха. Колебания ветви камертона сопровождаются периодическими сжатиями и разрежениями воздуха вблизи нее. Эти процессы сжатия и разрежения распространяются

в воздухе во все стороны (рис. 220). Они и являются звуковыми волнами.

При распространении звуковой волны частицы среды совершают колебания вдоль направления распространения колебаний. Волны, в которых колебания происходят вдоль направления распространения волны, называют продольными волнами.

Продольные волиы могут возникать в газах, жидкостях и твердых телах; поперечные волны распространяются в твердых телах, в которых возникают силы упругости при деформации сдвига или под действием сил поверхностного натяжения и силы тяжести.

Как в поперечных, так и в продольных волнах процесс распространения: колебаний, не сопровождается переносом вещества в направлении распространения волны. В каждой точке пространства частицы лишь совершают колебания относительно положения равновесия. Но распространение колебаний сопровождается передачей энергии колебаний от одной точки среды к другой.

Длина волны.

Скорость распространения волны. Скорость распространения колебаний в пространстве называется скоростью волны. Расстояние между ближайшими друг к другу точками, колеблющимися в одинаковых фазах (рис. 221), называется длиной волны. Связь между длиной волны К, скоростью волны и периодом колебаний Г дается выражением

Так как то скорость волны связана с частотой колебаний уравнением

Зависимость скорости распространения волн от свойств среды.

При возникновении волн их частота определяется частотой колебаний источника волн, а скорость зависит от свойств среды. Поэтому волны одной и той же частоты имеют различную длину в разных средах.

Лекция № 9

Механические волны

6.1. Распространение колебаний в упругой среде .

6.2. Уравнение плоской волны .

6.3. Волновое уравнение .

6.4. Скорость распространения волн в различных средах .

Механические колебания, распространяющиеся в упругой среде (твердой, жидкой или газообразной), называются механическими или упругими волнами .

Процесс распространения колебаний в сплошной среде принято называть волновым процессом или волной. Частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение. они лишь совершают колебания около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояние колебательного движения и его энергия. По этой причине основным свойством всœех волн, независимо от их природы, является перенос энергии без переноса вещества .

Учитывая зависимость отнаправления колебаний частиц по отношению к направлению, в котором распространяется волна, различают продольные и поперечные волны.

продольной , если колебания частиц среды происходят в направлении распространения волны. Продольные волны связаны с объемной деформацией растяжения − сжатия среды, в связи с этим они могут распространяться как в твердых телах, так и в жидкостях и газообразных средах.

Упругая волна принято называть поперечной , если колебания частиц среды происходят в плоскостях, перпендикулярных к направлению распространения волны Поперечные волны могут возникать только в такой среде, которая обладает упругостью формы, т. е. способна сопротивляться деформации сдвига. Этим свойством обладают только твердые тела.

На рис. 6.1.1 представлена гармоническая поперечная волна, распространяющаяся вдоль оси 0х . График волны дает зависимость смещения всœех частиц среды от расстояния до источника колебаний в данный момент времени. Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, принято называть длиной волны. Длина волны также равна тому расстоянию, на ĸᴏᴛᴏᴩᴏᴇ распространяется определœенная фаза колебания за период колебаний

Колеблются не только частицы, расположенные вдоль оси 0х , а совокупность частиц, заключенных в некотором объеме. Геометрическое место точек, до которых доходят колебания к моменту времени t , принято называть фронтом волны . Фронт волны представляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания еще не возникли. Геометрическое место точек, колеблющихся в одинаковой фазе, принято называть волновой поверхностью . Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Волновые поверхности бывают любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях принято называть плоской или сферической. В плоской волне волновые поверхности представляют собой множество параллельных друг другу плоскостей, а в сферической − множество концентрических сфер.