Меню

Что такое синтез белка в клетке. Биосинтез белка: кратко и понятно

Выбор автомобиля

Биосинтез белка и генетический код

Определение 1

Биосинтез белка – ферментативный процесс синтеза белков в клетке. В нём участвуют три структурные элемента клетки – ядро, цитоплазма, рибосомы.

В ядре клетки в молекулах ДНК сохраняется информация о всех белках, которые в ней синтезируются, зашифрованная с помощью четырёхбуквенного кода.

Определение 2

Генетический код – это последовательность расположения нуклеотидов в молекуле ДНК, которая определяет последовательность аминокислот в молекуле белка.

Свойства генетического кода таковы:

    Генетический код триплетный, то есть каждой аминокислоте соответствует свой кодовый триплет (кодон ), состоящий из трёх расположенных рядом нуклеотидов.

    Пример 1

    Аминокислота цистеин кодируется триплетом А-Ц-А, валин – триплетом Ц-А-А.

    Код не перекрывается, то есть нуклеотид не может входить в состав двух соседних триплетов.

    Код вырожден, то есть одна аминокислота может кодироваться несколькими триплетами.

    Пример 2

    Аминокислота тирозин кодируется двумя триплетами.

    Код не имеет запятых (разделительных знаков), считывание информации происходит тройками нуклеотидов.

    Определение 3

    Ген – участок молекулы ДНК, который характеризуется определённой последовательностью нуклеотидов и определяет синтез одногой полипептидной цепи.

    Код является универсальным, то есть единым для всех живых организмов – от бактерий до человека. У всех организмов есть одни и те же 20 аминокислот, которые кодируются одними и теми же триплетами.

Этапы биосинтеза белка: транскрипция и трансляция

Структура любой белковой молекулы закодирована в ДНК, которая не участвует непосредственно в её синтезе. Она служит лишь матрицей для синтеза РНК.

Процесс биосинтеза белка происходит на рибосомах, которые расположены преимущественно в цитоплазме. Значит, для осуществления передачи к месту синтеза белка генетической информации из ДНК нужен посредник. Эту функцию выполняет иРНК.

Определение 4

Процесс синтеза молекулы иРНК на одной цепи молекулы ДНК на основании принципа комплементарности называется транскрипцией , или переписыванием.

Транскрипция происходит в ядре клетки.

Процесс транскрипции осуществляется одновременно не на всей молекуле ДНК, а лишь на её небольшом участке, который отвечает определённому гену. При этом происходит раскручивание части двойной спирали ДНК и короткий участок одной из цепей оголяется – теперь он будет выполнять роль матрицы для синтеза иРНК.

Потом вдоль этой цепи двигается фермент РНК-полимераза, соединяющий нуклеотиды в цепь иРНК, которая удлиняется.

Замечание 2

Транскрипция может одновременно происходить и на нескольких генах одной хромосомы и на генах разных хромосомах.

Образованная в результате иРНК содержит последовательность нуклеотидов, которая является точной копией последовательности нуклеотидов на матрице.

Замечание 3

Если в молекуле ДНК есть азотистое основание цитозин, то в иРНК – гуанин и наоборот. Комплементарной парой в ДНК является аденин – тимин, а РНК вместо тимина содержит урацил.

На специальных генах синтезируются и два другие типа РНК – тРНК и рРНК.

Начало и окончание синтеза всех типов РНК на матрице ДНК строго фиксированы специальными триплетами, которые контролируют запуск (инициирующие) и остановку (терминальные) синтеза. Они выполняют функции «разделительных знаков» между генами.

Соединение тРНК с аминокислотами происходит в цитоплазме. Молекула тРНК формой напоминает листик клевера, на его верхушке расположен антикодон – триплет нуклеотидов, который кодирует аминокислоту, которую переносит данная тРНК.

Сколько видов аминокислот, столько существует и тРНК.

Замечание 4

Поскольку много аминокислот могут кодироваться несколькими триплетами, то количество тРНК больше 20 (известно около 60 тРНК).

Соединение тРНК с аминокислотами происходит с участием ферментов. Молекулы тРНК транспортируют аминокислоты к рибосомам.

Определение 5

Трансляция – это процесс, в результате которого информация о структуре белка, записанная в иРНК в виде последовательности нуклеотидов, реализуется в виде последовательности аминокислот в молекуле белка, которая синтезируется.

Этот процесс осуществляется в рибосомах.

Сначала иРНК присоединяется к рибосоме. На иРНК «нанизывается» первая рибосома, которая синтезирует белок. По мере продвижения рибосомы на конец иРНК, который освободился, «нанизывается» новая рибосома. На одной иРНК могут находиться одновременно более 80 рибосом, которые синтезируют один и тот же белок. Такая группа рибосом, соединённых с одной иРНК, называется полирибосомой , или полисомой . Вид белка, который синтезируется, определяется не рибосомой, а информацией, записанной на иРНК. Одна и та же рибосома способна синтезировать разные белки. После завершения синтеза белка рибосома отделяется от иРНК, а белок поступает в эндоплазматическую сеть.

Каждая рибосома состоит из двух субъединиц – малой и большой. Молекула иРНК присоединяется к малой субъединице. В месте контакта рибосомы и иРН находятся 6 нуклеотидов (2 триплета). К одному из них всё время подходят из цитоплазмы тРНК с разными аминокислотами и касаются антикодоном кодона иРНК. Если триплеты кодона и антикодона оказываются комплементарными, между аминокислотой уже синтезированной части белка и аминокислотой, которая доставляется тРНК, возникает пептидная связь. Соединение аминокислот в молекулу белка осуществляется с участием фермента синтетазы. Молекула тРНК отдаёт аминокислоту и переходит в цитоплазму, а рибосома передвигается на один триплет нуклеотидов. Так последовательно синтезируется полипептидная цепь. Продолжается всё это до тех пор, пока рибосома не дойдёт к одному из трёх терминирующих кодонов: УАА, УАГ или УГА. После этого синтез белка прекращается.

Замечание 5

Таким образом, последовательность кодонов иРНК определяет последовательность включения аминокислот в цепь белка. Синтезированные белки поступают в каналы эндоплазматического ретикулюма. Одна молекула белка в клетке синтезируется за 1 - 2 минуты.

Жизнь является процессом существования белковых молекул. Именно так о ней выражаются многие ученые, которые убеждены, что белок является основой всего живого. Эти суждения абсолютно правильны, потому как у данных веществ в клетке наибольшее число основных функций. Все прочие органические соединения играют роль энергетических субстратов, а энергия снова нужна для синтеза белковых молекул.

Этапная характеристика биосинтеза белка

Структура белка закодирована в нуклеиновой или РНК) в виде кодонов. Это наследственная информация, которая воспроизводится каждый раз, когда клетке требуется новое белковое вещество. Началом биосинтеза является в ядро о необходимости синтезировать новый белок с уже заданными свойствами.

В ответ на это деспирализуется участок нуклеиновой кислоты, где закодирована его структура. Это место дублируется информационной РНК и передается на рибосомы. Они отвечают за построение полипептидной цепи на основании матрицы - информационной РНК. Коротко все этапы биосинтеза представлены следующим образом:

  • транскрипция (этап удвоения участка ДНК с закодированной структурой белка);
  • процессинг (этап образования информационной РНК);
  • трансляция (синтез белков в клетке на основании информационной РНК);
  • посттрансляционная модификация ("созревание" полипептида, формирование его объемной структуры).

Транскрипция нуклеиновой кислоты

Весь синтез белков в клетке осуществляют рибосомы, а информация о молекулах содержится в нуклеиновой или ДНК). Она располагается в генах: каждый ген - это определенный белок. В генах заложена информация об аминокислотной последовательности нового белка. В случае с ДНК изъятие генетического кода ведется таким образом:

  • начинается освобождение участка нуклеиновой кислоты от гистонов, происходит деспирализация;
  • ДНК-полимераза удваивает участок ДНК, в котором хранится ген белка;
  • удвоенный участок представляет собой предшественника информационной РНК, который обрабатывается ферментами для удаления некодирующих вставок (на его основании ведется синтез иРНК).

На основании проинформационной РНК происходит синтез иРНК. Она уже является матрицей, после этого синтез белков в клетке происходит на рибосомах (в шероховатом эндоплазматическом ретикулуме).

Рибосомальный синтез белка

Информационная РНК имеет два конца, которые оформляются как 3`- 5`. Считывание и синтез белков на рибосомах начинается с 5`конца и продолжается до интрона - участка, который не кодирует никакую из аминокислот. Это происходит следующим образом:

  • информационная РНК "нанизывается" на рибосому, присоединяет первую аминокислоту;
  • рибосома смещается по информационной РНК на один кодон;
  • транспортная РНК предоставляет нужную (закодированную данным кодоном иРНК) альфа-аминокислоту;
  • аминокислота присоединяется к стартовой аминокислоте с формированием дипептида;
  • затем иРНК снова смещается на один кодон, подносится альфа-аминокислота и присоединяется к растущей цепочке пептида.

Как только рибосома достигает интрона (некодирующей вставки), информационная РНК просто продвигается далее. Затем, по мере продвижения информационной РНК, рибосома снова достигает экзона - участка, нуклеотидная последовательность которого соответствует определенной аминокислоте.

С этого места снова начинается присоединение мономеров белка к цепочке. Процесс продолжается до момента появления очередного интрона или до стоп-кодона. Последний прекращает синтез полипептидной цепочки, после чего считается завершенной и начинается этап постсинтетической (посттрансляционной) модификации молекулы.

Посттрансляционная модификация

После трансляции синтез белков происходит в цистернах гладкой Последняя содержит небольшое количество рибосом. В некоторых клетках они могут вообще отсутствовать в РЭС. Такие участки нужны для образования сначала вторичной, затем уже третичной или, если это запрограммировано, четвертичной структуры.

Весь синтез белков в клетке происходит с затратой огромного количества энергии АТФ. Потому все остальные биологические процессы нужны для поддержания белкового биосинтеза. Вдобавок некоторая часть энергии нужна для переноса белков в клетке активным транспортом.

Многие из белков переносятся из одной локации клетки в другую для модификации. В частности, посттрансляционный синтез белков происходит в комплексе Гольджи, где к полипептиду определенной структуры присоединяется углеводный или липидный домен.

Главным вопросом генетики является вопрос о синтезе белка. Обобщив данные по строению и синтезу ДНК и РНК, Крик в 1960г. предложил матричную теорию синтеза белков, основанную на 3–х положениях:

1. Комплементарность азотистых оснований ДНК и РНК.

2. Линейная последовательность расположения генов в молекуле ДНК.

3. Передача наследственной информации может происходить только с нуклеиновой кислоты на нуклеиновую или на белок.

С белка на белок передача наследственной информации невозможна. Таким образом матрицей для синтеза белка могут быть только нуклеиновые кислоты.

Для синтеза белка необходимы:

1. ДНК (гены) на которых синтезируются молекулы.

2. РНК – (и-РНК) или (м-РНК), р-РНК, т-РНК

В процессе синтеза белка различают этапы: транскрипции и трансляции.

Транскрипция – перепись (переписывание) информации о нуклеиновом строении с ДНК на РНК (т-РНК, и РНК, р-РНК).

Считывание наследственной информации начинается с определенного участка ДНК, который называется промотором. Промотор расположен перед геном и включает около 80 нуклеотидов.

На наружной цепи молекулы ДНК синтезируется и-РНК (промежуточная) служащая матрицей для синтеза белков и поэтому называется матричной. Она является точной копией последовательности нуклеотидов на цепи ДНК.

В ДНК имеются участки, которые не содержат генетической информации (интроны). Участки ДНК содержащие информацию называются экзонами.

В ядре имеются специальные ферменты, вырезающие интроны, а фрагменты экзона «сращиваются» между собой в строгом порядке в общую нить, этот процесс называется «сплайсингом». В процессе сплайсинга образуется зрелая м-РНК, содержащая информацию, необходимую для синтеза белка. Зрелая и-РНК (матричная РНК) проходит через поры ядерной мембраны и поступает в каналы эндоплазматической сети (цитоплазму) и здесь соединяется с рибосомами.

Трансляция – последовательность расположения нуклеотидов в и-РНК, переводится в строго упорядоченную последовательность расположения аминокислот в молекуле синтезируемого белка.

Процесс трансляции включает 2 этапа: активирование аминокислот и непосредственно синтез белковой молекулы.

Одна молекула м-РНК соединяется с 5-6 рибосомами, образуя полисомы. Синтез белка происходит на молекуле м-РНК, причем рибосомы продвигаются вдоль нее. В этот период находящиеся в цитоплазме аминокислоты активируются специальными ферментами, выделяемыми ферментами, выделяемыми митохондриями причем каждая из них своим специфическим ферментом.

Почти моментально аминокислоты связываются с другим видом РНК – низкомолекулярной растворимой, выполняющий функции переносчика аминокислот к молекуле м-РНК и получившей название транспортной (т-РНК). т-РНК переносит аминокислоты к рибосомам на определенное место, где к этому времени оказывается молекула м-РНК. Затем аминокислоты соединяются между собой пептидными связями и образуется белковая молекула. К концу синтеза белка молекула постепенно сходит с м-РНК.

На одной молекуле м-РНК образуется 10-20 молекул белка, а в некоторых случаях и много больше.

Наиболее неясным в синтезе белков вопрос о том, как т-РНК находит соответствующий участок м-РНК, к которому должна быть присоединена приносимая ею аминокислота.

Последовательность расположения азотистых оснований в ДНК, определяющая размещение аминокислот в синтезируемом белке – генетический код.

Поскольку одна и та же наследственная информация «записана» в нуклеиновых кислотах четырьмя знаками (азотистыми основаниями), а в белках – двадцатью (аминокислотами). Проблема генетического кода сводится к установлению соответствия между ними. Большую роль в расшифровке генетического кода сыграли генетики, физики, химики.

Для расшифровки генетического кода прежде всего необходимо было выяснить какое минимальное число нуклеотидов может определять (кодировать) образование одной аминокислоты. Если бы каждая из 20 аминокислот кодировалась одним основанием, то ДНК должна была бы иметь 20 различных оснований, фактически же их только 4. Очевидно, сочетание двух нуклеотидов также недостаточно для кодирования 20 аминокислот. Оно может кодировать лишь 16 аминокислот 4 2 = 16.

Тогда было предложено, что код включает 3 нуклеотида 4 3 = 64 комбинации и следовательно, способно кодировать более чем достаточное число аминокислот для образования любых белков. Такое сочетание трех нуклеотидов называется триплетным кодом.

Код имеет следующие свойства:

1.Генетический код триплетный (каждая аминокислота кодируется тремя нуклеотидами).

2.Вырожденность – одна аминокислота может кодироваться несколькими триплетами, исключение составляет триптофан и метионин.

3.В кодонах для одной аминокислоты первые два нуклеотида одинаковы, а третий изменяется.

4.Неперекрывающийся – триплеты не перекрывают друг друга. Один триплет не может входить в состав другого, каждый из них самостоятельно кодирует свою аминокислоту. Поэтому в полипептидной цепи рядом могут находиться любые две аминокислоты и возможны какие угодно их сочетания, т.е. в последовательности оснований ABCDEFGHI, первые три основания кодируют 1 аминокислоту (ABC-1), (DEF-2) и т.д.

5.Универсален, т.е. у всех организмов для определенных аминокислот кодоны одинаковы (от ромашки до человека). Универсальность кода свидетельствует о единстве жизни на земле.

6.Коленеарность – совпадение расположения кодонов в и-РНК с порядком расположения аминокислот в синтезирующийся полипептидной цепи.

Кодон – триплет нуклеотидов, кодирующий 1 аминокислоту.

7.Бессмысленный – он не кодирует никакой аминокислоты. Синтез белка на этом месте прерывается.

В последние годы выяснилось, что в митохондриях нарушается универсальность генетического кода, четыре кодона в митохондриях изменили свой смысл, например, кодон УГА – отвечает триптофану вместо «СТОП» - прекращение синтеза белка. АУА – соответствует метионину – вместо «изолейцина».

Открытие новых кодонов у митохондрий может служить доказательством того, что код эволюционировал, и что он не сразу стал таким.

Пусть наследственной информации от гена к молекуле белка можно выразить схематически.

ДНК – РНК – белок

Изучение химического состава клеток показал, что различные ткани одного и того же организма содержат различный набор белковых молекул, хотя они имеют и одинаковое количество хромосом, и одинаковую генетическую наследственную информацию.

Отметим такое обстоятельство: несмотря на наличие в каждой клетке всех генов целого организма, в отдельной клетке работают очень немногие гены – от десятых долей до нескольких процентов от общего числа. Остальные же участки «молчат», они заблокированы специальными белками. Это и понятно, зачем, например, генам гемоглобина работать в нервной клетке? То как клетка диктует, каким генам молчать, а каким работать, следует предполагать, что в клетке имеется какой-то совершенный механизм, регулирующий активность генов определяющий, какие гены в данный момент должны быть активными и каким следует находиться в неактивном (репрессивном) состоянии. Такой механизм по данным французских ученых Ф. Жакобо и Ж. Моно получил название индукции и репрессии.

Индукция – возбуждение белкового синтеза.

Репрессия – подавление белкового синтеза.

Индукция обеспечивает работу тех генов, которые синтезируют белок или фермент, и который необходим на данном этапе жизнедеятельности клетки.

У животных важную роль в процессе регуляции генов играют гормоны клеточные мембраны; у растений – условия внешней среды и другие высокоспециализированные индукторы.

Пример: при добавлении гормона щитовидной железы в среду совершается быстрое превращение головастиков в лягушек.

Для нормальной жизнедеятельности бактерии Е (Coli) необходим молочный сахар (лактоза). Если среда, в которой находятся бактерии, лактозы не содержит, эти гены находятся в репрессивном состоянии (т.е. они не функционируют). Внесенная в среду лактоза является индуктором, включающим в работу гены, отвечающих за синтез ферментов. После удаления лактозы из среды синтез этих ферментов прекращается. Таким образом, роль репрессора может выполнять вещество, которое синтезируется в клетке, и если его содержание превышает норму или оно израсходовано.

В синтезе белка или ферментов участвуют различные типы генов.

Все гены находятся в молекуле ДНК.

По своим функциям они не одинаковы:

- структурные – гены, влияющие на синтез какого-то фермента или белка, расположены в молекуле ДНК последовательно друг за другом в порядке их влияния на ход реакции синтеза или еще можно сказать структурные гены – это гены, которые несут информацию о последовательности аминокислот.

- акцепторные – гены не несут наследственной информации о строении белка, они регулируют работу структурных генов.

Перед группой структурных генов расположен общий для них ген – оператор, а перед ним – промотор . В целом эта функциональная группа называется опереном.

Вся группа генов одного оперона включается в процесс синтеза и выключается из него одновременно. Включение и выключение структурных генов составляет сущность всего процесса регуляции.

Функцию включения и выключения выполняет особый участок молекулы ДНК – ген оператор. Ген оператор является начальной точкой синтеза белка или как говорят «считывания» генетической информации. дальше в той же молекуле на некотором расстоянии расположен ген – регулятор, под контролем которого вырабатывается белок называемый репрессором.

Из всего сказанного видно, что синтез белка происходит очень сложно. Генетическая система клетки, используя механизмы репрессии и индукции, может принимать сигналы о необходимости начала и окончания синтеза того или иного фермента и осуществлять этот процесс с заданной скоростью.

Проблема регуляции действия генов у высших организмов имеет большое практическое значение в животноводстве и медицине. Установление факторов, регулирующих синтез белка, раскрыло бы широкие возможности управления онтогенезом, создания высокопродуктивных животных, а также устойчивых животных к наследственным заболеваниям.

Контрольные вопросы:

1.Назовите свойства генов.

2.Что такое ген?

3.Назовите каково биологическое значение ДНК, РНК.

4.Назовите этапы синтеза белка

5.Перечислите свойства генетического кода.

Процесс белкового биосинтеза чрезвычайно важен для клетки. Поскольку белки являются сложными веществами, которые играют основную роль в тканях, они незаменимы. По этой причине в клетке реализована целая цепь процессов белкового биосинтеза, которая протекает в нескольких органеллах. Это гарантирует клетке воспроизведение и возможность существования.

Сущность процесса биосинтеза белка

Единственное место синтеза белков - это шероховатая Здесь располагается основная масса рибосом, которые ответственны за образование полипептидной цепочки. Однако до того как начнется этап трансляции (процесс синтеза белка), требуется активация гена, в котором хранится информация о белковой структуре. После этого требуется копирование данного участка ДНК (или РНК, если рассматривается бактериальный биосинтез).

После копирования ДНК требуется процесс создания информационной РНК. На ее основании будет выполняться синтез белковой цепочки. Причем все этапы, которые протекают с вовлечением нуклеиновых кислот, должны происходить в Однако это не место, где происходит синтез белка. где осуществляется подготовка к биосинтезу.

Рибосомальный биосинтез белка

Основное место, где происходит синтез белка, - клеточная органелла, состоящая из двух субъединиц. Таких структур в клетке огромное количество, и они в основном расположены на мембранах шероховатой эндоплазматической сети. Сам биосинтез происходит так: образованная в ядре клетки информационная РНК выходит сквозь нуклеарные поры в цитоплазму и встречается с рибосомой. Затем иРНК проталкивается в промежуток между субъединицами рибосомы, после чего происходит фиксация первой аминокислоты.

К месту, где происходит синтез белка, аминокислоты подаются при помощи Одна такая молекула может однократно приносить по одной аминокислоте. Они присоединяются по очереди в зависимости от последовательности кодонов информационной РНК. Также синтез может прекращаться на некоторое время.

При продвижении по иРНК рибосома может попадать на участки (интроны), которые не кодируют аминокислоты. В этих местах рибосома просто продвигается по иРНК, но присоединения аминокислот к цепочке не происходит. Как только рибосома достигает экзона, то есть участка, который кодирует кислоту, тогда она снова присоединяется к полипептиду.

Постсинтетическая модификация белков

После достижения рибосомой стоп-кодона информационной РНК процесс непосредственного синтеза завершается. Однако полученная молекула имеет первичную структуру и пока не может выполнять зарезервированных для нее функций. Для того чтобы полноценно функционировать, молекула должна организоваться в определенную структуру: вторичную, третичную или еще более сложную - четвертичную.

Структурная организация белка

Вторичная структура - первая стадия структурной организации. Для ее достижения первичная полипептидная цепочка должна спирализоваться (образовать альфа-спирали) или загибаться (создать бета-слои). Затем, для того чтобы занимать еще меньше места по длине, молекула еще больше стягивается и сматывается в клубок за счет водородных, ковалентных и ионных связей, а также межатомных взаимодействий. Таким образом, получается глобулярная

Четвертичная белковая структура

Четвертичная структура самая сложная из всех. Она состоит из нескольких участков с глобулярным строением, соединенных фибриллярными нитями полипептида. Вдобавок третичная и четвертичная структура могут содержать углеводный или липидный остаток, что расширяет спектр функций белка. В частности, гликопротеиды, белка и углевода, являются иммуноглобулинами и выполняют защитную функцию. Также гликопротеиды располагаются на мембранах клеток и работают рецепторами. Однако модифицируется молекула не там, где происходит синтез белка, а в гладкой эндоплазматической сети. Здесь существует возможность присоединения липидов, металлов и углеводов к доменам белков.

Процесс синтеза белка в клетке называется биосинтезом. Он состоит из двух основных этапов - транскрипции и трансляции (рис. 4.5). Первый этап - транскрипция генетической информации - процесс синтеза однонитевой мРН К комплементарно одной смысловой цепи ДНК, то есть перенос генетической информации о нуклеотидном строении ДНК на мРНК. Через норы ядерной мембраны мРНК поступает в каналы эндоплазматической сети и здесь соединяется с рибосомами. Синтез белка происходит на молекуле мРНК, причем рибосомы продвигаются вдоль нее и к концу синтеза полипептидной цепи сходят с нее (рис. 4.6).


На рисунке 4.6 показаны только два триплета: антикодон комплементарный, соответствующий колону мРНК, и триплет ЦЦА, к которому присоединяется аминокислот (ЛК).
Аминокислоты, находящиеся в цитоплазме, активируются ферментами, после чего связываются с другим видом РНК - транспортной. Она перекосит аминокислоты к рибосомам. Различные тРНК доставляют к: рибосоме аминокислоты и располагают их соответственно последовательности триплетов мРНК. Три последовательных нуклеотида, кодирующие определенную аминокислоту, были названы кодоном (мРНК), а неразрывный триплет - антикодоном (тРНК). Кодоны ничем не отделены друг от друга. Доставляя определенную аминокислоту, тРНК взаимодействует с мРНК (кодон-антикодон). и аминокислота присоединяется к растущей пол и пептидной цепи. Совершенно очевидно, что синтез полипептида, то есть расположения в нем аминокислот, определяется последовательностью нуклеотидов мРНК.


Второй этап биосинтеза - трансляция - перевод генетической информации с мРНК в последовательность аминокислот полипептидной цепи.
В последовательности расположения нуклеотидов в триплете закодирована определенная аминокислота. Установлено, что генетический код является триплетным, то есть каждая аминокислота кодируется сочетанием из трех нуклеотидов. Если код триплетом, то из четырех азотистых оснований можно составить 64 кодона (4в3); этого с избытком хватает для кодирования 20 аминокислот. Выявлено новое свойство генетического кода - его избыточность, то есть некоторые аминокислоты кодируют не один, а большее число триплетов. Из 64 кодонов три признаны стопкодонами, они обусловливают прекращение (терминацию) или перерыв генетической трансляции (табл. 4.2).

Генетический код неперекрывающийся. Если бы кодоны перекрывались, то замена одной пары оснований должна была привести к замене двух аминокислот в полипептидной цепи, а этого не происходит. Кроме этого, он универсален - одинаков для биосинтеза белков живых существ. Универсальность кода свидетельствует о единстве жизни на Земле. Таким образом, генетический код - это система записи наследственной информации в нуклеиновых кислотах в виде последовательности нуклеотидов.
Впоследствии путь реализации генетической информации в клетке был дополнен обратной транскрипцией (синтез ДНК на матрице РНК) - репликацией ДНК и РНК (рис. 4.7).


Ген - участок ДНК. кодирующий первичную структуру полипептида или нуклеиновую кислоту. В контроле синтеза полинептидной цепи принимают участие несколько разных генов: структурные гены, ген-peгулятор, ген-оператор. Механизм регуляции генетического кода был открыт французскими учеными Ф. Жакобом и Ж. Моно в 1961 г. на бактериях E. coli и получил название механизма индукции-репрессии. Структурные гены кодируют последовательность аминокислот в полипептидах. Обычно для структурных генов существует общая система регуляции, состоящая из гена-регулятора и гена-оператора. Ген-регулятор обусловливает синтез белка-репрессора, который, соединяясь с оператором, «разрешает» или «запрещает» считывание информации соответствующих структурных генов. Ген-оператор и следующие за мим структурные гены были названы опероном - единицей считывания генетической информации, единицей транскрипции (рис. 4.8).

Например, для нормальной жизнедеятельности E. coli необходим молочный сахар - лактоза. У нее имеется лактозный участок (lас-оперон), на котором расположены три структурных гена для расщепления лактозы. Если лактоза не поступает в клетку, то белок-репрессор, вырабатываемый геном-регулятором, связывается с оператором и тем самым «запрещает» транскрипцию (синтез мРНК) со всего оперона. Если же лактоза поступает в клетку, то функция белка-репрессора блокируется, начинаются транскрипция, трансляция, синтез белков-ферментов и растепление лактозы. После расщепления всей лактозы восстанавливается активность белка-репрессора и транскрипция подавляется.
Таким образом, гены могут находиться во включенном и отключенном состоянии. На их регуляцию влияют продукты метаболизма, гормоны. Ген функционирует в системе ДНК-РНК-белок, на которую влияет взаимодействие генов и факторы внешней среды.